CONTRACT NO: HK/2011/07

WANCHAI DEVELOPMENT PHASE II AND CENTRAL
WANCHAI BYPASS
SAMPLING, FIELD MEASUREMENT AND TESTING WORKS
(STAGE 2)

ENVIRONMENTAL PERMIT NO. EP-356/2009, FURTHER EVIRONMENTAL PERMIT NOS. FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 ,FEP-05/356/2009, FEP-06/356/2009 AND FEP-07/356/2009

MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

- DECEMBER 2013 -

CLIENTS:

Civil Engineering and Development Department

and

Highways Department

PREPARED BY:

Lam Geotechnics Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: info@lamenviro.com

Website: http://www.lamenviro.com

CERTIFIED BY:

Raymond Dai

Environmental Team Leader

DATE:

14 January 2014

Ref.: AACWBIECEM00_0_4800L.14

14 January 2014

By Post and Fax (2691 2649)

AECOM Asia Company Limited 11/F, Tower 2 Grand Central Plaza 138 Shatin Rural Committee Road Shatin, New Territories Hong Kong

Attention: Mr. Conrad Ng

Dear Sir,

Re: Wan Chai Development Phase II and Central-Wan Chai Bypass Monthly Environmental Monitoring and Audit Report (December 2013) for EP-356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009, FEP-05/356/2009, FEP-06/356/2009 and FEP-07/356/2009

Reference is made to the Environmental Team's submission of the captioned Monthly Environmental Monitoring and Audit (EM&A) Report for December 2013 received by email on 14 January 2014.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.4 in the captioned Environmental Permits.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

David Yeung

Independent Environmental Checker

c.c. HyD

Mr. Jones Lai

by fax: 2714 5289

CEDD

Mr. Robert Tsoi

by fax: 2577 5040

AECOM

Mr. Francis Leong / Mr. Stephen Lai

by fax: 2691 2649

Lam

Mr. Raymond Dai

by fax: 2882 3331

Q:\Projects\AACWBIECEM00\Corr\AACWBIECEM00_0_4800L.14.doc

TABLE OF CONTENTS

EXE	XECUTIVE SUMMARY	4
1.	INTRODUCTION	11
	1.1 Scope of the Report	
2.	PROJECT BACKGROUND	15
	2.1 Background	15 16
3.	STATUS OF REGULATORY COMPLIANCE	22
	3.1 Status of Environmental Licensing and Permitting under the Project	25
4.	MONITORING REQUIREMENTS	36
	4.1 Noise Monitoring	40
5.	MONITORING RESULTS	48
	5.1 Noise Monitoring Results 5.2 Real-time Noise Monitoring 5.3 Air Monitoring Results 5.4 Water Monitoring Results 5.5 Waste Monitoring Results	49 50 51
6.	COMPLIANCE AUDIT	62
	 6.1 Noise Monitoring 6.2 Real-time noise Monitoring 6.3 Air Monitoring 6.4 Water Quality Monitoring 6.5 Review of the Reasons for and the Implications of Non-compliance 6.6 Summary of action taken in the event of and follow-up on non-complian 	64 65 67
7.	CUMULATIVE CONSTRUCTION IMPACT DUE TO THE CONCURRENT PRO)JECTS67
8.	ENVIRONMENTAL SITE AUDIT	68
9.	COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	69
10) CONCLUSION	72

LIST OF TABLES

Table I	Summary of Water Quality Monitoring Exceedances in Reporting Month
Table II	Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month
Table 2.1	Schedule 2 Designated Projects under this Project
Table 2.2	Details of Individual Contracts under the Project
Table 2.3	Contact Details of Key Personnel
Table 3.1	Summary of the current status on licences and/or permits on environmental
	protection pertinent to the Project
Table 3.4	Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/01
Table 3.5	Summary of submission status under FEP-02/356/2009 Condition
Table 3.6	Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/02
Table 3.7	Summary of submission status under FEP-03/356/2009 Condition
Table 3.8	Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/15
Table 3.9	Summary of submission status under FEP-04/356/2009 Condition
Table 3.10	Cumulative Summary of Valid Licences and Permits under Contract no. HK/2010/06
Table 3.11	Summary of submission status under EP-356/2009 and FEP-05/356/2009 Condition
Table 3.12	Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/19
Table 4.1	Noise Monitoring Station
Table 4.2	Real Time Noise Monitoring Station
Table 4.3	Air Monitoring Station
Table 4.4	Marine Water Quality Stations for Water Quality Monitoring
Table 4.5	Marine Water Quality Monitoring Frequency and Parameters
Table 4.6	Marine Water Quality Stations for Enhanced Water Quality Monitoring
Table 4.7	Marine Water Quality Stations for Additional DO Monitoring
Table 5.2	Noise Monitoring Station for Contract nos. HK/2009/01, HK/2009/02 and HK/2010/06
Table 5.3	Noise Monitoring Station for Contract no. HY/2009/15
Table 5.4	Noise Monitoring Station for Contract no. HY/2009/19
Table 5.5	Real Time Noise Monitoring Station for Contract no. HY/2009/19
Table 5.8	Air Monitoring Station for Contract no. HK/2009/02
Table 5.9	Air Monitoring Station for Contract no. HY/2009/15
Table 5.10	Air Monitoring Stations for Contract no. HY/2009/19
Table 5.12	Water Monitoring Stations for Contract no. HK/2009/01
Table 5.13	Water Monitoring Stations for Contract no. HK/2009/02
Table 5.14	Water Monitoring Stations for Contract no. HK/2010/06
Table 5.15	Water Monitoring Stations for Contract no. HY/2009/15
Table 5.16	Water Monitoring Stations for Contract no. HY/2009/19
Table 5.17	Summary of Water Quality Monitoring Exceedances in Reporting Month
Table 5.18	Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month
Table 5.19	Details of Waste Disposal for Contract no. HK/2009/01
Table 5.20	Details of Waste Disposal for Contract no. HK/2009/02
Table 5.21	Details of Waste Disposal for Contract no. HY/2009/15
Table 5.22	Details of Waste Disposal for Contract no. HK/2010/06
Table 5.23	Details of Waste Disposal for Contract no. HY/2009/19
Table 5.24	Details of Waste Disposal for Contract no. HK/2012/08
Table 5.25	Details of Waste Disposal for Contract no. HY/2010/08
Table 8.1	Summary of Environmental Inspections for Contract no. HK/2009/01
Table 8.2	Summary of Environmental Inspections for Contract no. HK/2009/02
Table 8.3	Summary of Environmental Inspections for Contract no. HY/2009/15
Table 8.4	Summary of Environmental Inspections for Contract no. HK/2010/06
Table 8.5	Summary of Environmental Inspections for Contract no. HY/2009/19

2

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

Table 9.1	Cumu	lative	Statistics	on Comp	olaints
	_		- · · · · · ·		

Table 9.2 Cumulative Statistics on Successful Prosecutions

Table 10.1 Construction Activities and Recommended Mitigation Measures in Coming

Reporting Month

LIST OF FIGURES

Figure	2.1	Project	Lavout
i igui c	4		Luyout

Figure 2.2 Project Organization Chart

Figure 4.1 Locations of Environmental Monitoring Stations

LIST OF APPENDICES

Appendix 3.1	Environmental	Mitigation	Implementation	Schedule
Appoilais oi i		mingunon	mmentation	Concaun

Appendix 4.1 Action and Limit Level

Appendix 4.2 Copies of Calibration Certificates

Appendix 5.1 Monitoring Schedule for Reporting Month and Coming month

Appendix 5.2 Noise Monitoring Results and Graphical Presentations

Appendix 5.3 Air Quality Monitoring Results and Graphical Presentations

Appendix 5.4 Water Quality Monitoring Results and Graphical Presentations

Appendix 5.4a Additional Dissolved Oxygen Monitoring Results

Appendix 5.5 Real-time Noise Monitoring Results and Graphical Presentations

Appendix 6.1 Event Action Plans

Appendix 6.2 Summary for Notification of Exceedance

Appendix 9.1 Complaint Log

Appendix 10.1 Construction Programme of Individual Contracts

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report –December 2013 for the Project of Wan Chai Development Phase II and Central-Wanchai Bypass under Environmental Permit no. EP-356/2009 and Further Environmental permit nos. FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009, FEP-05/356/2009, FEP-06/356/2009 and FEP-07/356/2009. This report presents the environmental monitoring findings and information recorded during the period November 2013 to December 2013. The cut-off date of reporting is at 27th of each reporting month.

Construction Activities for the Reported Period

- ii. During this reporting period, the major work activities for Contract no. HK/2009/01 included: Marine Works (at Wan Chai)
 - Further rock filling from HATS at East side of Area 8 in order to extend the work area.
 - Concreting of roof slab of bay 9.
 - The construction of D-Wall at C1/C2 interface. The guide wall and ground treatment for construction from CH325 to CH360.
 - Reinstatement works at Tsim Sha Tsi Site B.
 - Footpath diversion for construction of discharge pipes at Expo Drive East.

Waterworks

- Reinstatement works at HKCEC northwest.
- Cooling main laying works along Expo Drive East to Fleming Road in C1-3 and Zone X2-1.
- Salt watermain laying works near Grand Hyatt Hotel. Zone A5-2, A1-5C and A1-5B.
 Zone A1-5A3 near the Urban Car Park. Salt watermain laying works at Harbour Road and Zone A5-3, A5-4 toward the eastbound. Night works for salt watermain laying near Renaissance Harbour View hotel.

Tunnel Works

- Installation of pre-bored H-pile in CWB Stage 2 Atrium Link.
- Installation of pre-bored H-pile in CWB Stage 3 Atrium Link.
- Construction of the Common D-wall in Stage 2.
- Backfilling of Temporary Water Chanel & Reclaim Land at CH220 CH260
- Installation of sheet pile for demolition of P5 house and the works for tie-back.
- Installation of ELS at first layer for Stage 1.
- iii. During this reporting period, the major work activities for Contract no. HK/2009/02 included:
 - Modification of existing covered walkway along Expo Drive East.
 - Modification of road junction between Expo Drive and Expo Drive East.
 - Rectification works of the special movement joint for P8 discharge main at

CHBH152m. Trench excavation and the rectified special movement joint was delivered to the Site.

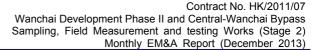
- Additional flushing & CCTV for P9 intake mains was done.
- The watertightness test of Salt Water Intake Culvert.
- The watertightness test of Inlet Chamber of WSD Salt Water Pumping Station.
- The remaining ABWF works and boundary wall in WSD Salt Water Pumping Station, including maintenance platform and external finishes.
- Watertightness test of Box Culvert N1 was eventually.
- Concreting for the Temporary Covered Walkway footing (GL5) in the vicinity of Ferry Pier.
- Area 9A was being vacated for handing over it to HY/2009/15 contractor. The new site office would be relocated to Gate No.3 underneath the existing Hung Hing Road Flyover.

WCR4/TWCR4 Reclamation:

- No progress in the reporting period as the diversion of temp 1800 dia, drain to the completed Box Culvert N1.
- iv. During this reporting period, the major work activities for Contract no. HY/2009/15 included:
 - Construction of EVA
- v. During this reporting period, the major work activities for Contract no. HK/2010/06 included:
 - · Sheet piling works
- vi. During this reporting period, the major work activities for Contract no. HY/2009/19 included:
 - Construction works for Box Culvert T1
 - Removal of marine platform
 - Construction of pile cap, pier & cross head (Marine)
 - ELS, EVB and Cut & Cover Tunnel
 - Installation of dewatering well
 - Laying of 1500φ pipe
 - · Launching of segments
 - Extraction of temporary pile from marine section
 - Construction of bridge truss TA1
- vii. During this reporting period, the major work activities for Contract no. HK/2012/08 included:
 - ELS for box culvert La at Lung King Street
 - Dredging
 - Filling for seawall rock mound formation
 - Filling for reclamation at sea area of former Expo Drive West Bridge

- Works for abandoning submarine sewerage outfall
- viii. During this reporting period, the major work activities for Contract no. HY/2010/08 was included:
 - Dredging works

Noise Monitoring


- ix. Noise monitoring during daytime and restricted hour were conducted at the stations M1a, M2b, M3a, M4b, M5b and M6 on a weekly basis in the reporting month.
- x. No action and 2 limit level exceedances at M6 HK Baptist Church Henrietta Secondary School were recorded on 10 and 18 December 2013 in this reporting month. The exceedances were concluded as non-project related.

Real-time Noise Monitoring

- xi. As the land-based piling and filling works- DP3 at Tin Hau had been completed on 3 September 2012 and confirmed by RSS, the real-time noise monitoring results at FEHD Hong Kong Transport Section Whitfield Depot was excluded under EP-356/2009 since 28 November 2012.
- xii. The real-time noise monitoring at RTN2-Oil Street Community Liaison Centre has been relocated to City Garden Electric Centre (RTN2a- Electric Centre) on 5 Oct 2012, which is a representative of noise sensitive receiver- City Garden. The baseline noise level of RTN2a will adopt the results derived from the baseline noise monitoring conducted in Electric Centre from 4 December 2009 to 17 December 2009.
- xiii. 24-hour real time noise monitoring was conducted at RTN2a Hong Kong Electric Centre. No project related exceedance was recorded in the reporting month.
- xiv. 24-hour real time noise monitoring was conducted at RTN2a Hong Kong Electric Centre. Limit level exceedances were recorded at RTN2a-Electric Centre during restricted hours on 30 November 2013. After checking with contractor, no noisy construction activities were conducted at the concerned location by the Contractor during the recorded period and the exceedances was non-continuous. As such, the exceedances were considered as non-project related and contributed by nearby IEC traffic and nearby non-CWB Project.

Air Quality Monitoring

- xv. Due to electricity interruption, the 24hr TSP monitoring at CMA2a was rescheduled from 23 December 2013 to 24 December 2013.
- xvi. Due to extension of site boundary by contractor of HY/2009/19, location of air monitoring station CMA1b Oil Street Community Liaison Centre has been finely adjusted on 21 April 2012.
- xvii. The location ID of air monitoring station CMA1b was updated as Oil Street Site Office in April 2013.
- xviii. 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring were conducted at CMA1b Oil Street Site Office; CMA2a Causeway Bay Community Center; CMA3a CWB PRE Site Office Area; CMA4a Society for the Prevention of Cruelty to Animals; CMA5a –

Children Garden opposite to Pedestrian Plaza; MA1e and MA1w – International Finance Centre eastern and western wing on every six days basis.

Water Quality Monitoring

- xix. Since marine dredging works was commenced under contract HY/2010/08. The respective water quality monitoring station C7 have been started under HY/2009/15 and HY/201008
- xx. Since marine dredging works was commenced under contract HK/2012/08. The respective water quality monitoring station WSD19, P1, P3, P4, and P5 have been started under contract HK/2012/08 September 2013.
- xxi. Water quality monitoring station RW21-P789 has been implemented with respect to HK/2009/02 started on 29 July 2013.
- xxii. As confirmed by CWB RSS, the marine pilling works under contract HY/2009/19 was confirmed completed by 4 March 2013. The water quality monitoring at the respective monitoring stations C8 and C9 were temporarily suspended since 30 March 2013.
- xxiii. WQM events on 22 April 2013 at monitoring stations C2, C3, C4e and C4w were temporarily suspended. Upon confirmation with WDII RSS and the IEC, water quality monitoring at relocated intakes monitoring location P1, P3, P4 and P5 were commenced since 24 April 2013.
- xxiv. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others were remains unchanged.
- xxv. Based on the joint inspection on 4 Jan 2012 for the NPR area, the 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 to confirm no water deterioration with respect to NPR was commenced since 7 Jan 2012 and was completed on 6 Feb 2012 water quality monitoring.
- xxvi. Water quality monitoring at WSD10 and WSD15 will be temporary suspended while water quality monitoring at WSD9 and WSD17 was implemented with respect to HK/2009/02 from 8 Feb 12 onwards:
- xxvii. Water quality monitoring at C8 and C9 have been implemented with respect to HY/2009/19 since the marine bore piling work started on 28 Jan 12.
- xxviii. Due to the marine piling under Contract no. HY/2009/19 was completed on 4 March 2013, the temporary suspension of impact water quality monitoring at C8 and C9 from 4 March 2013 have been monitored for 4-week period after the completion of marine works to confirm no water deterioration.
- xxix. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

- xxx. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
- xxxi. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha Tsui-DP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7 and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.
- xxxii. Water quality monitoring at 11 monitoring stations was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in *Table I*.

Table I Summary of Water Quality Monitoring Exceedances in Reporting Month

	Water		Mid-flood				Mid-ebb						
Contract no.	Monitoring	D	0	Turb	idity	S	S	D	0	Turb	idity	S	S
	Station	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
HK/2009/01	C1	0	0	0	0	0	0	0	0	0	0	0	0
	WSD19	0	0	1	3	1	3	0	0	0	1	0	0
	P1	0	0	0	0	0	0	0	0	0	0	0	0
HK/2012/08	P3	0	0	0	0	0	0	0	0	0	0	0	0
	P4	0	0	0	0	0	0	0	0	0	0	0	0
	P5	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/02 Monitoring started on	WSD21	0	0	0	0	2	2	0	0	0	0	0	2
8 Feb 2012	WSD9	0	0	1	0	0	1	0	0	0	0	0	1
	WSD17	0	0	0	0	0	1	0	0	0	0	0	0
Monitoring started on 29 July 2013	RW21-P789	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/15 & HY/2010/08	C7	0	0	0	0	0	0	0	0	0	0	0	0
Total	Total		0	2	3	3	6	0	0	0	1	0	3

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

- WSD9 and WSD17 were implemented with respect to HK/2009/02 from 8 Feb 2012.
- 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8 and C9 were completed on 6 Feb 2012.
- C8 and C9 were implemented with respect to HY/2009/19 from 28 Jan 2012.
- C8 & C9 was temporary suspended on 30 March 2013 due to the marine works for Contract no. HY/2009/19 had been completed on 4 March 2013
- WSD7 and WSD20 water quality monitoring were temporarily suspended from 27 Apr 2012.
- C2, C3 C4e and C4w water quality monitoring station was temporarily suspended since 24 Apr 2013
- C5e and C5w water quality monitoring station was temporarily suspended since 29 July 2013

xxxiii. Investigation found that the exceedances were not project-related. The details of the recorded exceedances can be referred to the **Section 6.4**.

xxxiv. Enhanced DO monitoring at 4 monitoring stations in Causeway Bay Typhoon Shelter and Ex-Public Cargo Works Area was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in *Table II*.

Table II Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month

		Mid-f	lood	Mid-ebb	
Contract no.	Water Monitoring Station	D	0	DO	
	Cation	AL	LL	AL	LL
	C6	0	0	0	0
HY/2009/15	C7	0	0	0	0
111/2009/13	Ex-WPCWA SW	0	1	0	5
	Ex-WPCWA SE	1	0	0	5
Total		1	1	0	10

xxxv. There were 1 action level exceedances and 10 limit level exceedances of enhanced dissolved oxygen recorded in this reporting month. Investigation found that the exceedances are not related to the Project works. The details of the recorded exceedances can be referred to the **Section 6.4**.

xxxvi. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored.

xxxvii. With respect to the commencement of dredging works under HK/2012/08 and the installation of MTR precast protection unit, the enhanced water quality monitoring for Culvert L was temporarily suspended since 24 July 2013.

Complaints, Notifications of Summons and Successful Prosecutions

xxxviii. There was no environmental complaint received in this reporting month.

Site Inspections and Audit

xxxix. The Environmental Team (ET) conducted weekly site inspections for Contract nos. HK/2009/01, HK/2009/02, HY/2009/15 HK/2010/06, HY/2009/19, HK/2012/08 and HY/2010/08 under EP no. EP-356/2009 in the reporting month. Major observations and recommendations made during the audit sessions were rectified by the Contractors. No non-conformance was identified during the site inspections.

Future Key Issues

xl. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HK/2009/01 – Wan Chai Development Phase II – Central –Wanchai Bypass at HKCEC

Marine Works

- Import rock fill from HATS to extend the coastline at East of Area 8.
- The roof slab of bay 8 would be cast. Backfilling works at box culvert bay 8 and bay9
 would be carried out for further road diversion works.
- Construction of RC structure proposed box culvert wall and roof slab at bay 8 and bay 9.
- D-wall construction at Stage 3.
- Outfall construction for discharge pipes at Expo Drive East.

Waterworks (Cooling Watermains, Salt Watermains and Sewer)

- Salt watermain laying works for the works area in Zone A1-5B, A1-5C and A1-5A2 near Grand Hyatt hotel.
- Salt watermain laying works at Harbour Road would go further north to Zone A5-3, A5-4 and A5-6.
- Cooling main laying works along Expo Drive East and night works.
- Pedestrian relocation at the temporary steel bridge near junction of Expo Drive East and Convention Ave for cooling main laying works

Tunnel Works

- Stage 3 tunnel works include the installation of pre-bored H-pile and Stage 3
 Southern D-wall construction.
- Demolition of the HKCEC Pump home.
- ELS for Stage 1 CWB.
- Backfilling Temporary Water Channel & Reclaim Land at CH220- CH260.

<u>Contract no. HK/2009/02 – Wan Chai Development Phase II – Central – Wan Chai Bypass at Wan Chai East</u>

- Special movement joint rectification works for P8 discharge mains at CHBH152m.
- Hatch box replacement for P7 intake mains and cable relocation works for subsequent construction of 8x8 pit.
- All outstanding works for handing over P7, P8 and P9 Cooling Water Pumping Stations.
- The connection with the existing DN600 salt watermains at Hung Hing Road.

- The water tightness test for Salt Water Intake Culvert.
- Removal of temporary bulkhead for commencement of wet test of the WSD Salt Water Pumping Station.
- Wet test of the WSD Salt Water Pumping Station and connection with existing saltwater system at Hung Hing Road.
- Outstanding works at WSD Salt Water Pumping Station.
- Box Culvert N1 & Drain FRP-N and the associated testing for handing over to DSD
- Drainage re-diversion from temp 1800 dia. drain to the completed Box Culvert N1.
- · ABWF works in Ferry Pier.
- Rectifying the defects in movable ramps.
- Most of the individual T&C of E&M equipment at Ferry Pier
- Utility installation works and EVA construction extending from P7 Cooling Water Pumping Station to the Ferry Pier.
- Construction of Temporary Covered Walkway footing at GL5 in the vicinity of Ferry Pier.
- Design verification works of the Eastern Bulkhead by the CSD Designer for substantial handing over to Section IXA of the Works.
- Seawall blocks installation and filling works at WCR4/TWCR4 after abandonment of existing temp 1800 dia. drain at WCR4.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)</u>

Construction of EVA

Contract no. HK/2010/06 – Wan Chai Development Phase II – Central – Wan Chai Bypass over MTR Tsuen Wan Line

Sheet piling works

Contract no. HY/2009/19- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- Removal of strut at ELS will commence
- Construction works for Box Culvert T1
- Removal of marine platform
- · Construction of pile cap, pier & cross head (Marine)
- ELS, EVB and Cut & Cover Tunnel
- · Installation of dewatering well
- Laying of 1500φ pipe
- Launching of segments
- Extraction of temporary pile from marine section

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

Construction of bridge truss TA1

<u>Contract no. HK/2012/08 – Wan Chai Development Phase II – Central- Wan Chai Bypass at Wan Chai West</u>

- Dredging
- ELS for box culvert La at Lung King Street
- Filling for seawall rock mound formation
- Filling for reclamation at sea area of former Expo Drive West Bridge
- Caisson seawall units installation
- Works for abandoning submarine sewerage outfall

Contract no. HY/2010/08 - Central - Wan Chai Bypass (CWB) - Tunnel (Slip Road 8)

Dredging works

1 Introduction

1.1 Scope of the Report

- 1.1.1. Lam Geotechnics Limited (LGL) has been appointed to work as the Environmental Team (ET) under Environmental Permit no. EP-356/2009 and Further Environmental permit nos. FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009, FEP-05/356/2009, FEP-06/356/2009 and FEP-07/356/2009 to implement the Environmental Monitoring and Audit (EM&A) programme as stipulated in the EM&A Manual of the approved Environmental Impact Assessment (EIA) Report for Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) and in the EM&A Manual of the approved EIA Report for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-014/2001).
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.3 of EM&A Manual and "Environmental Monitoring and Audit Requirements" under Particular Specification Section 27.
- 1.1.3. This report documents the finding of EM&A works for Environmental Permit no. EP-356/2009, Further Environmental Permit no. FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009, FEP-05/356/2009, FEP-06/356/2009 and FEP-07/356/2009 during the period of November 2013 to December 2013. The cut-off date of reporting is at 27th of each reporting month.

1.2 Structure of the Report

- **Section 1** *Introduction* details the scope and structure of the report.
- **Section 2 Project Background** summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- **Section 3 Status of Regulatory Compliance** summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- **Section 4** *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- **Section 5** *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- **Section 6 Compliance Audit** summarizes the auditing of monitoring results, all exceedances environmental parameters.
- Section 7 Cumulative Construction Impact due to the Concurrent Projects summarizes the relevant cumulative construction impact due to the concurrent activities of the concurrent Projects.

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

Section 8 Site Inspection – summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

Section 9 *Complaints, Notification of summons and Prosecution* – summarizes the cumulative statistics on complaints, notification of summons and prosecution

Section 10 Conclusion

2 Project Background

2.1 Background

- 2.1.1. "Wan Chai Development phase II and Central-Wan Chai Bypass" and "Central-Wan Chai Bypass and Island Eastern Corridor Link" (hereafter called "the Project") are Designed Project (DP) under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO). The Environmental Impact Assessment (EIA) Reports for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-041/2001) and Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) have been approved on 31 August 2001 and 11 December 2008 respectively.
- 2.1.2. The key purpose of Wan Chai Development Phase II (WDII) is to provide land at Wan Chai North and North Point for construction of the Central-Wan Chai Bypass and Island Eastern Corridor Link (CWB). Land formed under the project will be developed as a world-class waterfront promenade joining that at the new Central waterfront for public enjoyment.
- 2.1.3. There is a compelling and present need for the CWB to provide relief to the very congested east-west Connaught Road Central/Harcourt Road / Gloucester Road Corridor (the Corridor) which is currently operating beyond its capacity. The CWB will provide relief to the existing congestion along the Corridor and cater for the anticipated growth of traffic on Hong Kong Island. Without the CWB and its access roads, there will not be sufficient capacity to serve the heavy traffic demands at both strategic and local levels.

2.2 Scope of the Project and Site Description

- 2.2.1. The Project is located mainly in Wan Chai North, Causeway Bay and North Point, and is demarcated by Gloucester Road and Victoria Park Road to the south, Fenwick Pier Street to the west and Tong Shui Road Interchange to the east, as shown in *Figure 2.1*.
- 2.2.2. The study area encompasses existing developments along the Wan Chai, Causeway Bay and North Point shorelines. Major land uses include the Hong Kong Convention & Exhibition Centre (HKCEC) Extension, the Wan Chai Ferry Pier, the ex-Wan Chai Public Cargo Working Area (ex-PCWA), the Royal Hong Kong Yacht Club (RHKYC), the Police Officers' Club, the Causeway Bay Typhoon Shelter (CBTS) and commercial and residential developments.

2.2.3. The scope of the Project comprises:

- Land formation for key transport infrastructure and facilities, including the Trunk Road
 (i.e. CWB) and the associated slip roads for connection to the Trunk Road and for
 through traffic from Central to Wan Chai and Causeway Bay. The land formed for the
 above transport infrastructure will provide opportunities for the development of an
 attractive waterfront promenade for the enjoyment of the public
- Reprovisioning / protection of the existing facilities and structures affected by the land formation works mentioned above
- Extension, modification, reprovisioning or protection of existing storm water drainage outfalls, sewerage outfalls and watermains affected by the revised land use and land formation works mentioned above

Lam Geotechnics Limited

- Upgrading of hinterland storm water drainage system and sewerage system, which would be rendered insufficient by the land formation works mentioned above
- Provision of the ground level roads, flyovers, footbridges, necessary transport facilities and the associated utility services
- Construction of the new waterfront promenade, landscape works and the associated utility services
- The Trunk Road (i.e. CWB) within the study area and the associated slip roads for connection to the Trunk Road.
- 2.2.4. The project also contains various Schedule 2 DPs that, under the EIAO, require Environmental Permits (Eps) to be granted by the DEP before they may be either constructed or operated. *Table 2.1* summarises the five individual DPs under this Project. *Figure 2.1* shows the locations of these Schedule 2 DPs.

Table 2.1 Schedule 2 Designated Projects under this Project

Item	Designated Project	EIAO Reference	Reason for inclusion
DP1	Central-Wanchai Bypass (CWB) including its road tunnel and slip roads	Schedule 2, Part I, A.1 and A.7	Trunk road and road tunnel more than 800 m in length
DP2	Road P2 and other roads which are classified as primary/district distributor roads	Schedule 2, Part I, A.1	Primary / district distributor roads
DP3	Reclamation works including associated dredging works	Schedule 2, Part I, C.1 and C.12	Reclamation more than 5 ha in size and a dredging operation less than 100 m from a seawater intake point
DP5	Wan Chai East Sewage Outfall	Schedule 2, Part I, F.5 and F.6	Submarine sewage pipelines with a total diameter more than 1,200 mm and include a submarine sewage outfall
DP6	Dredging for the Cross-harbour Water Mains from Wan Chai to Tsim Sha Tsui	Schedule 2, Part I, C.12	A dredging operation less than 100 m from a seawater intake point

2.3 Division of the Project Responsibility

- 2.3.1. Due to the multi-contract nature of the Project, there are a number of contracts sub-dividing the whole works area into different work areas to be commenced. Contractors of individual contracts will be required by the EP holder to apply Further Environmental Permits (FEP) such that the impact monitoring stations are sub-divided accordingly to facilitate the implementation of EM&A programme and to streamline the EM&A reporting for individual FEP holders correspondingly.
- 2.3.2. The details of individual contracts are summarized in *Table 2.2*.

Table 2.2 Details of Individual Contracts under the Project

Contract No.	Contract Title	Associated DP(s)	Construction Commencement Date	
HK/2009/01 Wan Chai Development Phase II – Central –Wanchai Bypass at Hong		DP3, DP6	23 July 2010	
	Kong Convention and Exhibition Centre	DP1, DP2	25 August 2011	
HK/2009/02	Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai	DP3, DP5	5 July 2010	
	East	DP1	26 April 2011	
HY/2009/11	Wan Chai Development Phase II and Central – Wan Chai Bypass – North Point Reclamation	DP3	17 March 2010 (Completed)	
HY/2009/15	Central-Wanchai Bypass – Tunnel	DP3	10 November 2010	
	(Causeway Bay Typhoon Shelter Section)		13 July 2011	
HK/2010/06	Wan Chai Development Phase II-Central-Wan Chai Bypass over MTR Tsuen Wan Line	DP3	22 March 2011	
04/HY/2006	Reconstruction of Bus Terminus near Man Yiu Street and Man Kwong Street	DP1	September 2010 (Completed)	
HY/2009/17	Central – Wan Chai Bypass (CWB) at FEHD Whitfield Depot – Advanced piling works.	DP1	5 October 2010 (Completed)	
HY/2009/18	Central – Wan Chai Bypass (CWB) – Central Interchange	DP1	21 April 2011	
HY/2009/19	Central – Wanchai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link	DP1	24 March 2011	
HK/2012/08	Wan Chai Development Phase II Central- Wan Chai Bypass at Wan Chai West	DP1,DP2, DP3	5 March 2013	
HY/2010/08	Central- Wanchai Bypass Tunnel – Tunnel (Slip Road 8)	DP1, DP2, DP3	21 March 2013	

2.4 Project Organization and Contact Personnel

- 2.4.1. Civil Engineering and Development Department and Highways Department are the overall project controllers for the Wan Chai Development Phase II and Central-Wan Chai Bypass respectively. For the construction phase of the Project, Project Engineer, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.4.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in *Figure 2.2*. Key personnel and contact particulars are summarized in *Table 2.3*:

Table 2.3 Contact Details of Key Personnel

Party	Role	Post	Name	Contact	Contact
				No.	Fax

Party	Role	Post	Name	Contact No.	Contact Fax
AECOM	Engineer's Representative for WDII	Principal Resident Engineer	Mr. Frankie Fan	2587 1778	2587 1877
	Engineer's Representative for CWB	Principal Resident Engineer	Mr. Peter Poon	3912 3388	3912 3010
Chun Wo – Leader Joint	Contractor under Contract no. HK/2009/01	Joint Venture Board Representative	Mr. Simon Liu	2162 9909	2587 1878
Venture		Deputy Site Agent	Mr Andy Yu	9648 4896	
		Construction Manager	Mr Terry Wong	9757 9846	
		Construction Manager	Mr. Wyman Wong	9627 2467	
		Construction Manager	Mr Kenneth Chan	9160 3850	
		Environmental Officer (Compliance Manager)	Mr. Frank So	9863 6587	
		Environmental Supervisor	Fan Chun Wai	6487 4488	
Chun Wo –	Contractor under	Project Manager	Mr. David Lau	3658-3022	2827 9996
CRGL Joint Venture	Contract no. HK/2009/02	Quality & Environmental Manager	Mr. C.P. Ho	9191 8856	
China	Contractor under	Project Director	K C Cheung	3557 6399	2566 2192
State Constructi on Engineerin g (HK) Ltd.	Contract no. HY/2009/15	Site Manager	J H Chen	3557 6368	
		Contractor's Representative	Andrew Wong	3557 6358	
		Head of Construction Manager	Roger Cheung	3557 6371	
		Senior Construction Manager	Gene Cheung	3557 6395	
		Environmental Officer	Andy Mak	3557 6347	
Gammon	Contractor under	Project Manager	Mr. Paul Lui	9095 7922	2529 2880
-Leader JV	Contract no. HK/2010/06	Site Agent	Mr. Eric Yip	2529 2068	
		Environmental Officer	Clement Pang	9735 9200	
		Environmental Supervisor	Jacky Cheung	9779 2292	

Party	Role	Post	Name	Contact No.	Contact Fax
Chun Wo – CRGL –	Contractor under Contract no.	Project Manager	Mr. Rayland Lee	3758 8879	
MBEC_ Joint	HY/2009/19	Site Agent	Mr. Eric Yip	252902068	
Venture		Environmental Engineer	Mr. Calvin Leung	9286 9208	
		Environmental Manager / Environmental Officer	Mr. M.H. Isa	9884 0810	
		Construction Manager (Marine)	William Luk	9610 1101	
		Construction Manager (Land)	Patrick Cheung	9643 3012	
		Construction Manager (Land)	Eric Fong	6191 9337	
		Operation Manager (Land)	Yung Kwok Wah	9834 1010	
China	Contractor	Project Director	Andrew Tse	9137 1811	2877 1522
State- Leader JV	under Contract	Project Manager	Victor Wu	9193 8871	
Loader ov	no. HK/2012/08	Deputy Project Manager	George Cheung	9268 1918	
		Site Agent	Paul Lui	9095 7922	
		Environmental Officer	James Ma	9130 9549	
		Environmental Supervisor	Ching Man, Chan	6050 4919	
China State	Contractor under Contract no. HY/2010/08	Project Director	Cheung Kit Cheung	3557 6399	2566 8061
		Project Manager	Chan Ying Lun	9812 0592	
		Deputy Project Manager	Chris Leung	3467 4299	
		Site Agent	Dave Chan	3467 4277	
		Environmental Officer	C.M. Wong	3557 6464	
		Environmental Supervisor	Louis Lam Tsz Kwan	3557 6470	
ENVIRON Hong Kong Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Mr. David Yeung	3465 2888	3465 2899
Lam Geotechni cs Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Mr. Raymond Dai	2882 3939	2882 3331

- 2.4.3. For Contract no. HK/2009/01, the principal work activities in this reporting month included:
 - Marine Works (at Wan Chai)
 - Further rock filling from HATS at East side of Area 8 in order to extend the work area.
 - · Concreting of roof slab of bay 9.
 - The construction of D-Wall at C1/C2 interface. The guide wall and ground treatment for construction from CH325 to CH360.
 - Reinstatement works at Tsim Sha Tsi Site B.
 - Footpath diversion for construction of discharge pipes at Expo Drive East.

Waterworks

- Reinstatement works at HKCEC northwest.
- Cooling main laying works along Expo Drive East to Fleming Road in C1-3 and Zone X2-1.
- Salt watermain laying works near Grand Hyatt Hotel. Zone A5-2, A1-5C and A1-5B.
 Zone A1-5A3 near the Urban Car Park. Salt watermain laying works at Harbour Road and Zone A5-3, A5-4 toward the eastbound. Night works for salt watermain laying near Renaissance Harbour View hotel.

Tunnel Works

- Installation of pre-bored H-pile in CWB Stage 2 Atrium Link.
- Installation of pre-bored H-pile in CWB Stage 3 Atrium Link.
- Construction of the Common D-wall in Stage 2.
- Backfilling of Temporary Water Chanel & Reclaim Land at CH220 CH260
- Installation of sheet pile for demolition of P5 house and the works for tie-back.
- Installation of ELS at first layer for Stage 1..
- 2.4.4. For Contract no. HK/2009/02, the principal work activities in this reporting month included:
 - Modification of existing covered walkway along Expo Drive East.
 - Modification of road junction between Expo Drive and Expo Drive East.
 - Rectification works of the special movement joint for P8 discharge main at CHBH152m. Trench excavation and the rectified special movement joint was delivered to the Site.
 - Additional flushing & CCTV for P9 intake mains was done.
 - The watertightness test of Salt Water Intake Culvert.
 - The watertightness test of Inlet Chamber of WSD Salt Water Pumping Station.
 - The remaining ABWF works and boundary wall in WSD Salt Water Pumping Station, including maintenance platform and external finishes.
 - Watertightness test of Box Culvert N1 was eventually.

- Concreting for the Temporary Covered Walkway footing (GL5) in the vicinity of Ferry Pier.
- Area 9A was being vacated for handing over it to HY/2009/15 contractor. The new site office would be relocated to Gate No.3 underneath the existing Hung Hing Road Flyover.

WCR4/TWCR4 Reclamation:

- No progress in the reporting period as the diversion of temp 1800 dia, drain to the completed Box Culvert N1.
- 2.4.5. For Contract no. HY/2009/15, the principal work activities in this reporting month included:
 - Construction of EVA
- 2.4.6. For Contract no. HK/2010/06, the principal work activities in this reporting month included:
 - Sheet piling works
- 2.4.7. For Contract no. HY/2009/19, the principal work activity in this reporting month included:
 - Construction works for Box Culvert T1
 - · Removal of marine platform
 - Construction of pile cap, pier & cross head (Marine)
 - ELS, EVB and Cut & Cover Tunnel
 - Installation of dewatering well

 - Launching of segments
 - Extraction of temporary pile from marine section
 - Construction of bridge truss TA1
- 2.4.8. For Contract no. HK/2012/08, the principal work activity in this reporting month included:
 - ELS for box culvert La at Lung King Street
 - Dredging
 - Filling for seawall rock mound formation
 - Filling for reclamation at sea area of former Expo Drive West Bridge
 - Works for abandoning submarine sewerage outfall
- 2.4.9. For Contract no. HY/2010/08, the principal work activity in this reporting month included:
 - Dredging works

2.4.10. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HK/2009/01 – Wan Chai Development Phase II – Central –Wanchai Bypass at HKCEC

Marine Works

- Import rock fill from HATS to extend the coastline at East of Area 8.
- The roof slab of bay 8 would be cast. Backfilling works at box culvert bay 8 and bay9
 would be carried out for further road diversion works.
- Construction of RC structure proposed box culvert wall and roof slab at bay 8 and bay 9.
- D-wall construction at Stage 3.
- Outfall construction for discharge pipes at Expo Drive East.

Waterworks (Cooling Watermains, Salt Watermains and Sewer)

- Salt watermain laying works for the works area in Zone A1-5B, A1-5C and A1-5A2 near Grand Hyatt hotel.
- Salt watermain laying works at Harbour Road would go further north to Zone A5-3, A5-4 and A5-6.
- Cooling main laying works along Expo Drive East and night works.
- Pedestrian relocation at the temporary steel bridge near junction of Expo Drive East and Convention Ave for cooling main laying works

Tunnel Works

- Stage 3 tunnel works include the installation of pre-bored H-pile and Stage 3 Southern D-wall construction.
- Demolition of the HKCEC Pump home.
- ELS for Stage 1 CWB.
- Backfilling Temporary Water Channel & Reclaim Land at CH220- CH260.

<u>Contract no. HK/2009/02 – Wan Chai Development Phase II – Central – Wan Chai Bypass at Wan Chai East</u>

- Special movement joint rectification works for P8 discharge mains at CHBH152m.
- Hatch box replacement for P7 intake mains and cable relocation works for subsequent construction of 8x8 pit.
- All outstanding works for handing over P7, P8 and P9 Cooling Water Pumping Stations.
- The connection with the existing DN600 salt watermains at Hung Hing Road.
- The water tightness test for Salt Water Intake Culvert.

- Removal of temporary bulkhead for commencement of wet test of the WSD Salt Water Pumping Station.
- Wet test of the WSD Salt Water Pumping Station and connection with existing saltwater system at Hung Hing Road.
- Outstanding works at WSD Salt Water Pumping Station.
- Box Culvert N1 & Drain FRP-N and the associated testing for handing over to DSD
- Drainage re-diversion from temp 1800 dia. drain to the completed Box Culvert N1.
- ABWF works in Ferry Pier.
- Rectifying the defects in movable ramps.
- Most of the individual T&C of E&M equipment at Ferry Pier
- Utility installation works and EVA construction extending from P7 Cooling Water
 Pumping Station to the Ferry Pier.
- Construction of Temporary Covered Walkway footing at GL5 in the vicinity of Ferry Pier.
- Design verification works of the Eastern Bulkhead by the CSD Designer for substantial handing over to Section IXA of the Works.
- Seawall blocks installation and filling works at WCR4/TWCR4 after abandonment of existing temp 1800 dia. drain at WCR4.

<u>Contract no. HY/2009/15 – Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter Section)</u>

Construction of EVA

<u>Contract no. HK/2010/06 – Wan Chai Development Phase II – Central – Wan Chai Bypass over MTR Tsuen Wan Line</u>

Sheet piling works

Contract no. HY/2009/19- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- Removal of strut at ELS will commence
- Construction works for Box Culvert T1
- · Removal of marine platform
- Construction of pile cap, pier & cross head (Marine)
- · ELS, EVB and Cut & Cover Tunnel
- Installation of dewatering well
- · Launching of segments
- Extraction of temporary pile from marine section
- Construction of bridge truss TA1

<u>Contract no. HK/2012/08 – Wan Chai Development Phase II – Central- Wan Chai Bypass at Wan Chai West</u>

- Dredging
- · ELS for box culvert La at Lung King Street
- Filling for seawall rock mound formation
- Filling for reclamation at sea area of former Expo Drive West Bridge
- Caisson seawall units installation
- Works for abandoning submarine sewerage outfall

Contract no. HY/2010/08 - Central - Wan Chai Bypass (CWB) - Tunnel (Slip Road 8)

Dredging works

3 Status of Regulatory Compliance

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project

Permits and/or Licences	Reference No.	Issued Date	Status
Environmental Permit	EP-356/2009	30 Jul 2009	Valid
Environmental Permit	EP-364/2009/A	4 Aug 2010	Superseded
Environmental Permit	EP-364/2009/B	20 Sep 2012	Valid
Environmental Permit	EP-364/2009	17 Aug 2009	Superseded
Environmental Permit	EP-376/2009	13 Nov 2010	Valid
Further Environmental Permit	FEP-01/356/2009	18 Feb 2010	Surrendered
Further Environmental Permit	FEP-02/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-04/356/2009	22 Nov 2010	Valid
Further Environmental Permit	FEP-05/356/2009	24 Mar 2011	Valid
Further Environmental Permit	FEP-01/364/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-02/364/2009	21 Apr 2010	Valid
Further Environmental Permit	FEP-03/364/2009	12 Jul 2010	Surrendered
Further Environmental Permit	FEP-04/364/2009/A	14 Oct 2010	Surrendered
Further Environmental Permit	FEP-05/364/2009/A	15 Nov 2010	Valid
Further Environmental Permit	FEP-06/364/2009/A	22 Nov 2010	Valid
Further Environmental Permit	FEP-07/364/2009/B	20 Sep 2012	Valid
Further Environmental Permit	FEP-08/364/2009/A	15 Jun 2012	Valid
Further Environmental Permit	FEP-06/356/2009	5 Mar 2013	Valid
Further Environmental Permit	FEP-07/356/2009	26 July 2013	Valid
Further Environmental Permit	FEP-10/364/2009/B	26 July 2013	Valid

3.1.2. Due to the multi-contract nature of the Project, the status of permits and/or licences under the individual contract(s) are presented as below:

<u>Contract no. HK/2009/01 – Wan Chai Development Phase II – Central –Wanchai Bypass at HKCEC</u>

3.1.3. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2009/01 under FEP-02/356/2009 are shown in *Table 3.4* and *Table 3.5*.

Table 3.4 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/01

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-02/356/2009	24 Mar 2010	N/A	Valid
1 Gilliu	FEP-02/364/2009	21 Apr 2010	N/A	Valid
Notification of Works Under APCO	313088	06 Jan 2010	N/A	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0797-13	16 Jul 2013	18 Jul 2013 to 15 Jan 2014	Cancelled
	GW-RS0773-13	16 Jul 2013	20 July 2013 to 19 Jan 2014	Cancelled
	GW-RS0807-13	24 Jul 2013	25 Jul 2013 to 21 Jan 2014	Cancelled
	GW-RS0626-13	13 Jun 2013	15 Jun 2013 to 12 Dec 2013	Cancelled
	GW-RS0631-13	14 Jun 2013	14 Jun 2013 to 13 Dec 2013	Cancelled
	GW-RS0651-13	21 Jun 2013	22 Jun 2013 to 20 Dec 2013	Cancelled
	GW-RS0856-13	7 Aug 2013	10 Aug 2013 to 1 Feb 2014	Valid
	GW-RS0883-13	12 Aug 2013	14 Aug 2013 to 13 Feb 2014	Valid
	GW-RS0937-13	23 Aug 2013	25 Aug 2013 to 22 Feb 2014	Valid
	GW-RS1063-13	24 Sep 2013	26 Sep 2013 to 23 Mar 2014	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
	GW-RE1034-13	27 Sep 2013	30 Sep 2013 to 29 Mar 2014	Valid
	GW-RS0626-13	13 Jun 2013	15 Jun 2013 to 12 Dec 2013	Cancelled
	GW-RS1094-13	7 Oct 2013	08 Oct 2013 to 07 Apr 2014	Valid
	GW-RS1114-13	11 Oct 2013	13 Oct 2013 to 12 Apr 2014	Valid
	GW-RS1153-13	21Oct 2013	23 Oct 2013 to 20 Apr 2014	Cancelled
	GW-RS1083-13	27 Sep 2013	29 Sep 2013 to 26 Mar 2014	Cancelled
	GW-RS1091-13	7 Oct 2013	08 Oct 2013 to 07 Apr 2014	Valid
	GW-RS1211-13	4 Nov 2013	09 Nov 2013 to 08 May 2014	Valid
	GW-RS1246-13	8 Nov 2013	10 Nov 2013 to 07 May 2014	Valid
	GW-RS1265-13	14 Nov 2013	16 Nov 2013 to 12 May 2014	Valid
	GW-RS-1270-13	13 Nov 2013	14 Nov 2013 to 13 May 2014	Valid
	GW-RS1324-13	19 Nov 2013	22 Nov 2013 to 18 May 2014	Valid
	GW-RS1374-13	2 Dec 2013	3 Dec 2013 to 2 Jun 2014	Valid
	GW-RS1433-13	20 Dec 2013	21 Dec 2013 to 20 Jun 2014	Valid
Discharge Licence	WT00006220-2010	18 Mar 2010	31 Mar 2015	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
	WT00009641-2011	24 Jul 2011	31 Jul 2016	Valid
Billing account under Waste Disposal Ordinance	7010069	21 Jan 2010	N/A	Valid
Registration as a Chemical Waste Producer	WPN5213-134-C3585-01	21 Jan 2010	N/A	Valid

Table 3.5 Summary of submission status under FEP-02/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	13 Apr 2010
Condition 2.7	Works Schedule and Location Plan	8 Apr 2010
	Silt Curtain Deployment Plan (Rev. 5)	24 Aug 2012
Condition 2.8	Silt Curtain Deployment Plan (Rev. 4)	12 July 2012
Condition 2.6	Silt Curtain Deployment Plan (Rev. 3)	27 June 2012
	Silt Curtain Deployment Plan	19 Apr 2010
	Silt Screen Deployment Plan (Rev.5)	24 Jul 2013
Condition 2.9	Silt Screen Deployment Plan (Rev.4)	15 Nov 2012
	Silt Screen Deployment Plan	19 Apr 2010
0 - 171 0 0	Supplementary Document on Silt Curtain and Silt Screen Deployment Plan	19 Jul 2010
Conditions 2.8 and 2.9	Report on Field Testing for Silt Curtain	26 Aug 2010
	Report on Field Testing for Silt Curtain (Rev. A)	15 Nov 2010
Condition 2.12(d)	Alternative Proposal on Concurrent Dredging for Sewage Pipeline and Cross Harbour Water Mains	15 Apr 2011
Condition 2.17	Noise Management Plan	23 Apr 2010

EP Condition	Submission	Date of Submission
Condition 2.18	Landscape Plan (Erection of Decorative Screen Hoarding along Construction Site around Hong Kong Exhibition and Convention Centre)	15 May 2010
	Landscape Plan (Night-time Lighting)	22 Oct 2010
	Landscape Plan (Rev. B)	15 Nov 2010
Condition 1.12	Notification of Commencement Date	20 Jun 2011
Condition 2.6 to 2.8	Management Organization, Works Schedule and Location Plan	18 May 2011
Condition 2.9	Noise Management Plan	10 Jun 2011
Condition 2.11	Landscape Plan	31 Oct 2013

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East

3.1.4. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2009/02 under FEP-03/356/2009 are shown in *Table 3.6* and *Table 3.7*.

Table 3.6 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/02

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	N/A	Valid
	FEP-01/364/2009	24 Mar 2010	N/A	Valid
Notification of Works Under APCO	313962	2 Feb 2010	N/A	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RE0508-13	21 May /2013	30 May 2013 to 29 Nov 2013	Expired
	GW-RS0525-13	21 May /2013	30 May 2013 to 29 Nov 2013	Expired
	GW-RS0538-13	21 May /2013	30 May 2013 to 29 Nov 2013	Expired
	GW-RS0539-13	23 May 2013	6 June 2013 to 5 Dec 2013	Cancelled
	GW-RS0554-13	23 May 2013	6 June 2013 to 5 Dec 2013	Expired
	GW-RS0633-13	14 June 2013	16 June 2013 to 13 Dec 2013	Cancelled
	GW-RS0739-13	09 July 2013	17 July 2013 to 16 Jan 2014	Valid
	GW-RS0708-13	03 July 2013	03 July 2013 to 01 Jan 2014	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
	GW-RS0846-13	30 July 2013	01 Aug 2013 to 25 Jan 2014	Cancelled
	GW-RS0857-13	2 Aug 2013	15 Aug 2013 to 14 Feb 2014	Valid
	GW-RS0945-13	29 Aug 2013	11 Sep 2013 to 10 Mar 2014	Valid
	GW-RS0993-13	6 Sep 2013	20 Sep 2013 to 19 Mar 2014	Valid
	GW-RS1027-13	10 Sep 2013	15 Sep 2013 to 9 Mar 2014	Valid
	GW-RS1002-13	12 Sep 2013	25 Sep 2013 to 24 Mar 2014	Valid
	GW-RS1078-13	30 Sep 2013	18 Oct 2013 to 17 Apr 2014	Valid
	GW-RS1119-13	11 Oct 2013	16 Oct 2013 to 15 Apr 2014	Valid
	GW-RS1128-13	8 Oct 2013	11 Oct 2013 to 6 Apr 2014	Valid
	GW-RS1197-13	4 Nov 2013	10 Nov 2013 to 9 May 2014	Valid
	GW-RS1254-13	12 Nov 2013	17 Nov 2013 to 16 May 2014	Valid
	GW-RS1256-13	12 Nov 2013	22 Nov 2013 to 21 May 2014	Valid
	GW-RS1240-13	7 Nov 2013	28 Nov 2013 to 27 May 2014	Valid
	GW-RE1199-13	6 Nov 2013	30 Nov 2013 to 29 May 2014	Valid
	GW-RS1258-13	12 Nov 2013	17 Nov 2013 to 6 May 2014	Valid
	GW-RS1261-13	12 Nov 2013	13 Nov 2013 to 6 May 2014	Valid
	GW-RS1325-13	27 Nov 2013	30 Nov 2013 to 29 May 2014	Valid
	GW-RS1337-13	27 Nov 2013	29 Nov 2013 to 26 May 2014	Valid
	GW-RS1466-13	24 Dec 2013	17 Jan 2014 to 16 July 2014	Valid
	GW-RS1458-13	24 Dec 2013	2 Jan 2014 to 1 July 2014	Valid
	WT00006249-2010	22 Mar 2010	31 Mar 2015	Valid
	WT00006436-2010	15 Apr 2010	30 Apr 2015	Valid
Discharge License	WT00006673-2010	14 May 2010	31 Mar 2015	Cancelled
Discharge Licence	WT00006757-2010	28 May 2010	31 May 2015	Valid
	WT00007129-2010	28 July 2010	31 Jul 2015	Valid
	WT00008982-2011	26 April 2011	30 April 2016	Valid
	WT00009691-2011	1 Aug 2011	31 July 2016	Valid
Billing Account under Waste Disposal Ordinance (Land)	7010255	10 Feb 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance (Marine)	7011496	6 Oct 2010	N/A	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Registration as Chemical Waste Producer (Wan Chai)	WPN5213-135-C3 593-01	10 Mar 2010	N/A	Valid
Registration as Chemical Waste Producer (TKO 137)	WPN5213-839-C3 593-02	22 Sep 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/14-098	26/11/2013	29 Nov 2013 to 28 May 2014	Valid

Table 3.7 Summary of submission status under FEP-03/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 1.12	Commencement Date of Construction of Marine Works	8 April 2010
Condition 2.6	Management Organization of Main Construction Companies	10 April 2010
Condition 2.7	Works Schedule and Location Plans	8 April 2010
	Silt Curtain Deployment Plan (Revision A)	20 April 2010
	Silt Curtain Deployment Plan (Revision B)	25 May 2010
	Silt Curtain Deployment Plan (Revision C)	14 Jun 2010
	Silt Curtain Deployment Plan (Revision H)	15 Feb 2011
Condition 2.8	Silt Curtain Deployment Plan (Revision I)	17 Nov 2011
	Silt Curtain Deployment Plan (Revision J)	15 Feb 2012
	Silt Curtain Deployment Plan (Revision K)	3 May 2012
	Silt Curtain Deployment Plan (Revision L)	25 Oct 2012
	Silt Curtain Deployment Plan (Revision M)	30 Nov 2012
	Silt Screen Deployment Plan	21 April 2010
	Supplementary Information for Existing WSD Salt Water Intakes at Quarry Bay and Sai Wan Ho	5 Oct 2010
	Silt Screen Deployment Plan (Revision B)	15 Feb 2012
	Silt Screen Deployment Plan (Revision C)	3 May 2012
	Silt Screen Deployment Plan (Revision D)	10 Dec 2012
Condition 2.17	Noise Management Plan	6 May 2010
Condition 2.18	Landscape Plan (Decorative Screen Hoarding)	11 May 2010
	Landscape Plan (Control of Night Time Lighting)	2 June 2010

EP Condition	Submission	Date of Submission
	Landscape Plan (Combined Version)	20 July 2011
	Landscape Plan (Combined Version)	5 Aug 2011
	Acknowledge of Submission	22 Aug 2011

<u>Contract no. HY/2009/15 – Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter Section)</u>

3.1.5. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HY/2009/15 under EP-356/2009 are shown in *Table* 3.8 and *Table* 3.9.

Table 3.8 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/15

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-04/356/2009	22 Nov 2010	N/A	Valid
Notification of Works Under APCO	321822	24 Sep 2010	N/A	Valid
Construction Noise Permit (CNP) for breakwater removal works at Eastern Breakwater of CBTS	GW-RS0798-13	18 Jul 2013	19 Jul 2013 to 18 Jan 2014	Cancelled
Construction Noise Permit (CNP) for concreting works at Eastern Breakwater of CBTS	GW-RS0921-13	20 Aug 2013	20 Aug 2013 to 18 Feb 2014	Valid
Construction Noise Permit (CNP) for Pre-treatment, ELS and rock breaking works at TS4/ME4	GW-RS0705-13	28 Jun 2013	02 Jul 2013 to 31 Dec 2013	Valid
Construction Noise Permit (CNP) for maintenance dredging	GW-RS1232-13	6 Nov 2013	6 Nov 2013 to 30 Apr 2014	Valid
Registration as a Chemical Waste Producer	WPN5213-147-C116 9-35	15 Nov 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance	7011553	30 Sep 2010	27 Sep 2010 to 27 Jan 2016	Valid
Billing Account under Waste Disposal Ordinance (Dumping by Vessel)	7011761	25 Sep 2013	17 Oct 2013 to 16 Jan 2014	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/14-034	16 Jul 2013	24 Jul 2013 to 23 Jan 2014	Valid
Dumping Permit (Type 1 – Open Sea Disposal and Type 2 – Confined Marine Disposal)	EP/MD/14-093	19 Nov 2013	24 Nov 2013 to 23 Dec 2013	Expired

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Dumping Permit (Type 3 – Special Treatment / Disposal contained in Geosynethetic Containers)	EP/MD/14-080	12 Nov 2013	13 Nov 2013 to 12 Dec 2013	Expired

Table 3.9 Summary of submission status under FEP-04/356/2009 Condition

FEP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	30 Sep 2010
	Amendment for Management Organization of Main Construction Companies	16 May 2011
Condition 2.7	Works Schedule and Location Plans	27 Oct 2010
	Amendment for Works Schedule and Location Plans	12 Nov 2010
Condition 2.8	Silt Curtain Deployment Plan	30 Nov 2010
	Amendment for Silt Curtain Deployment Plan	24 Feb 2011
	Amendment for Silt Curtain Deployment Plan	11 May 2011
	Amendment for Silt Curtain Deployment Plan	11 Sep 2012
	Amendment for Silt Curtain Deployment Plan	30 Oct 2012
Condition 2.9	Silt Screen Deployment Plan	19 Oct 2010
	Amendment for Silt Screen Deployment Plan	18 Feb 2011
	Amendment for Silt Screen Deployment Plan	15 Jun 2011
Condition 2.18	Proposal for the Removal of Odorous Sediment and Slime	13 Jan 2011
	Amendment for Proposal for the Removal of Odorous Sediment and Slime	8 Mar 2011
	Amendment for Proposal for the Removal of Odorous Sediment and Slime	2 Aug 2011
Condition 2.21	Landscape Plan	18 Feb 2011
0 - 111 - 0 00	Noise Management Plan	20 Oct 2010
Condition 2.23	Amendment for Noise Management Plan	27 Jan 2011

3.1.6. Implementation status of the recommended mitigation measures during this reporting period is presented in *Appendix 3.1*.

<u>Contract no. HK/2010/06 – Wan Chai Development Phase II – Central –Wanchai Bypass over</u> MTR Tsuen Wan Line

3.1.7. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2010/06 under EP-356/2009 is shown in *Table* 3.10 and *Table* 3.11.

Table 3.10 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2010/06

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-05/356/2009	24 Mar 2011	N/A	Valid
Futurer Environmental Fermit	FEP-08/364//2009/A	15 June 2012	N/A	Valid
Notification of Works Under APCO	326344	18 Jan 2011	N/A	Valid
Construction Noise Permit (CNP) for piling equipment	PP-RS0017-13	19 June 2013	6 Jul 2013 to 5 Jan 2014	Valid
Billing Account under Waste Disposal Ordinance	7012338	16 Feb 2011	N/A	Valid

Table 3.11 Summary of submission status under EP-356/2009 and FEP-05/356/2009 Condition

EP Condition	Submission	Date of Submission	
Condition 2.6	Management Organization of Main Construction Companies	29 April 2013	
Condition 2.7	Works Schedule and Location Plans	11 March 2011	
Condition 2.8	Revised Silt Curtain Deployment Plan	31 August 2011	
	Revised Silt Curtain Deployment Plan	22 October 2012	
	Revised Silt Curtain Deployment Plan	26 November 2012	
	Revised Silt Curtain Deployment Plan	28 January 2013	
Condition 2.9	Silt Screen Deployment Plan	11 April 2011	
Condition 2.23	Noise Management Plan	11 March 2011	

<u>Contract no. HY/2009/19 – Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link</u>

3.1.8. Summary of the current status on licences and/or permits on environmental protection pertinent for contract no. HY/2009/19 is shown in *Table 3.12*.

<u>Table 3.12</u> Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/19

Permit / Licence / Notification / Approval	Reference No.	Issued Date	Valid Period / Expiry date	Status
Further Environmental Permit	FEP-07/364/2009/B	20 Sep 2012	Granted	Valid
Notification of Works Under APCO	326160	24 Jan 2011	Notified	Valid

Permit / Licence / Notification / Approval	Reference No.	Issued Date	Valid Period / Expiry date	Status
Construction Noise Permit (CNP) (For D-wall construction) (Portion I, VII, VIII & IX)	GW-RS0503-13	21-May-12	20-Nov-13	Cancelled
	GW-RS1125-13	13-Oct-13	10-Apr-13	Cancelled
	GW-RS1473-13	29-Dec-13	23-Jun-14	Valid
Construction Noise Permit (CNP) (For Bored pile construction at Portion III)	GW-RS0767-13	11-Jul-13	10-Jan-14	Valid
Construction Noise Permit (CNP) (For Segment Launching at Portion III)	GW-RS1009-13	09-Sep-13	08-Mar-14	Cancelled
	GW-RS1176-13	25-Oct-13	22-Apr-14	Cancelled
	GW-RS1474-13	29-Dec-13	23-Jun-13	Cancelled
Construction Noise Permit (CNP) (For Watson Road)	GW-RS0528-12	26-May-13	25-Nov-13	Expired
Construction Noise Permit (CNP) (For IEC)	GW-RS0706-13	11-Jul-13	10-Jan-14	Valid
Construction Noise Permit (CNP) (For IEC Parapet Removal – Loading/Unloading)	GW-RS1099-13	21-Oct-13	20-Apr-14	Valid
Construction Noise Permit (CNP) (For Portion Vi Marine)	GW-RS0724-13	08-Jul-13	07-Jan-14	Cancelled
	GW-RS1179-13	25-Oct-13	22-Apr-14	Valid
Discharge Licence (Land)	WT00010093-2011	17 Aug 2012	30-Sept-16	Cancelled
	WT00010093-2011	17 Aug 2012	30-Sept-16	Valid
Discharge Licence (Sea)	WT00010865-2011	03 Nov 2011	30-Nov-16	Valid
C&D Waste Disposal	7012306	10 Feb 2011	Registered	-
Vessel Disposal	7013285	21 July 2011	Registered	-
Registration as Chemical Waste Producer	5213-151-C3654-01	24 Mar 2011	Registered	-
Dumping Permit (Tunnel) (Type 1 – Open Sea Disposal)	EP/MD/14-019	10 Jun 2013	09 Dec 2013	Expired
	EP/MD/14-104	10 Dec 2013	09 Jun 2013	Valid

Permit / Licence / Notification / Approval	Reference No.	Issued Date	Valid Period / Expiry date	Status
Dumping Permit (Tunnel) (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal)	EP/MD/14-097	25 Nov 2013	24 Dec 2013	Expired

<u>Contract no. HK/2012/08 – Wan Chai Development Phase II – Central- Wan Chai Bypass at Wan Chai West</u>

3.1.9. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2012/08 under EP-356/2009 are shown in *Table* 3.13 and *Table* 3.14.

<u>Table 3.1</u>3 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2012/08

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-06/356/2009	5 Mar 2013	N/A	Valid
Notification of Works Under APCO	355439	4 Feb 2013	N/A	Valid
Registration as a Chemical Waste Producer	5213-134-C3790-01	8 Mar 2013	N/A	Valid
Billing Account under Waste Disposal Ordinance	7016883	18 Feb 2013	18 Jul 2017	Valid
Construction Noise Permit	GW-RS0703-13	3 Jul 2013	4 Jul 2013 to 2 Jan 2014	Valid
	GW-RS0824-13	29 Jul 2013	30 Jul 2013 to 28 Jan 2014	Valid
	GW-RS0896-13	19 Aug 2013	20 Aug 2013 to 18 Feb 2014	Cancelled
	GW-RS1175-13	23 Oct 2013	25 Oct 2013 to 21 Apr 2014	Cancelled
	GW-RS01086-13	30 Sep 2013	2 Oct 2013 to 26 Mar 2014	Valid
	GW-RS1231-13	8 Nov 2013	11 Nov 2013 to 28 Feb 2014	Valid
	GW-RS1357-13	2 Dec 2013	4 Dec 2013 to 1 Jun 2014	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/14-008	23 May 2013	24 Nov 2013	Supersede d by EP/MD/14- 082
	EP/MD/14-082	29 Oct 2013	31 Dec 2013	Valid
Dumping Permit (Type 1 – Open	EP/MD/14-094	19 Nov 2013	24 Dec 2013	Expired

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine disposal)	EP/MD/14-110	16 Dec 2013	24 Jan 2014	Valid

Table 3.14 Summary of submission status under EP-356/2009 and FEP-06/356/2009 Condition

FEP Condition	Submission	Date of Submission
Condition 2.8	Silt Curtain Deployment Plan (Rev. 3)	Submitted to EPD on 25 Nov 2013
Condition 2.9	Silt Screen Deployment Plan (Rev. 2)	Deposited to EPD on 19 Aug 2013
Condition 2.23	Noise Management Plan (Rev. 2)	Generally in order as commented by EPD on 15 Aug 2013
Condition 2.24	Landscape Plan (Rev. 3)	Generally in order as commented by EPD on 31 Oct 2013

Contract no. HY/2010/08 - Central - Wan Chai Bypass (CWB) - Tunnel (Slip Road 8)

3.1.10. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HY/2010/08 under EP-356/2009 are shown in Table 3.15 and Table 3.16.

Table 3.15 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2010/08

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-07/356/2009	26 Jul 2013	NA	Valid
	FEP-10/364/2009/B	26 Jul 2013	NA	Valid
Notification of Works Under APCO	357176	2 Apr 2013	NIL	Valid
Registration as a Chemical Waste Producer	WPN5213-147-C11 69-44	27 Mar 2013	NIL	Valid
Billing Account under Waste Disposal Ordinance	7017170	27 Mar 2013	NIL	Valid
Water Discharge Licence	WT0001651-2013	9 Jul 2013	31 Jul 2018	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	() in EP/MD/14-095	29 Nov 2013	1 Jun 2014	Valid

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Dumping Permit (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine disposal)	() in EP/MD/14-096	29 Nov 2013	1 Jan 2014	Valid

Table 3.16 Summary of submission status under EP-356/2009 and FEP-07/356/2009 Condition

FEP Condition	Submission	Date of Submission
Condition 2.8	Silt Curtain Deployment Plan	28 Nov 2013
Condition 2.9	Silt Screen Deployment Plan	29 Nov 2013
Condition 2.23	Noise Management Plan	21 Nov 2013
Condition 2.24	Landscape Plan	18 Nov 2013

Monitoring Requirements

4.1 Noise Monitoring

NOISE MONITORING STATIONS

4.1.1. The noise monitoring stations for the Project are listed and shown in *Table 4.1* and *Figure 4.1*.

Appendix 4.1 shows the established Action/Limit Levels for the monitoring works.

Table 4.1 Noise Monitoring Station

Station	Description
M1a	Harbour Road Sports Centre
M2b	Noon Gun Area
МЗа	Tung Lo Wan Fire Station
M4b	Victoria Centre
M5b	City Garden
M6	HK Baptist Church Henrietta Secondary School

REAL-TIME NOISE MONITORING STATIONS

- 4.1.2. The real-time noise monitoring stations for the Project are listed and shown in *Table 4.2* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.
- 4.1.3. The real-time noise monitoring at RTN2-Oil Street Community Liaison Centre has been relocated to City Garden Electric Centre (RTN2a- Electric Centre) on 5 Oct 2012, which is a representative of noise sensitive receiver- City Garden. The baseline noise level of RTN2a will adopt the results derived from the baseline noise monitoring conducted in Electric Centre from 4 December 2009 to 17 December 2009.
- 4.1.4. As the land-based piling and filling works- DP3 at Tin Hau had been completed on 3 September 2012 and confirmed by RSS, the real-time noise monitoring results at FEHD Hong Kong Transport Section Whitfield Depot was excluded under EP-356/2009 since 28 November 2012.

Table 4.2 Real Time Noise Monitoring Station

District	Station	Description
Tin Hau	RTN1	FEHD Hong Kong Transport Section Whitfield Depot
North Point	RTN2	Oil Street Community Liaison Centre
North Point	RTN2a	Electric Centre

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

4.1.5. The construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). $L_{eq (30 \text{ minutes})}$ shall be used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. For all other time

39

EP-356/2009

- periods, $L_{eq (5 \text{ minutes})}$ shall be employed for comparison with the Noise Control Ordinance (NCO) criteria. Supplementary information for data auditing, statistical results such as L10 and L90 shall also be obtained for reference.
- 4.1.6. Noise monitoring shall be carried out at all the designated monitoring stations. The monitoring frequency shall depend on the scale of the construction activities. The following is an initial guide on the regular monitoring frequency for each station on a weekly basis when noise generating activities are underway:
 - one set of measurements between 0700 and 1900 hours on normal weekdays.
- 4.1.7. If construction works are extended to include works during the hours of 1900 0700 as well as public holidays and Sundays, additional weekly impact monitoring shall be carried out during respective restricted hours periods. Applicable permits under NCO shall be obtained by the Contractor.

MONITORING EQUIPMENT

- 4.1.8. As referred to in the Technical Memorandum ™ issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration level from before and after the noise measurement agree to within 1.0 dB.
- 4.1.9. Noise measurements shall not be made in fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

4.2 Air Monitoring

AIR QUALITY MONITORING STATIONS

4.2.1. The air monitoring stations for the Project are listed and shown in *Table 4.3* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Table 4.3 Air Monitoring Station

Station ID	Monitoring Location	Description
CMA1b	Oil Street Community Liaison Centre	North Point
CMA2a	Causeway Bay Community Centre	Causeway Bay
CMA3a	CWB PRE Site Office *	Causeway Bay
CMA4a	Society for the Prevention of Cruelty to Animals	Wan Chai
CMA5a	Children Playgrounds opposite to Pedestrian Plaza	Wan Chai
CMA6a	WDII PRE Site Office *	Wan Chai

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

Remarks: As per the ENPC meeting in January 2011, the monitoring stations CMA3a – Future CWB site office at Wanchai Waterfront Promenade and CMA6a – Future AECOM site office at Work Area were renamed as remark.

AIR MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.2.2. One-hour and 24-hour TSP levels should be measured to indicate the impacts of construction dust on air quality. The 24-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.
- 4.2.3. All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper, and any other local atmospheric factors affecting or affected by site conditions, etc., shall be recorded down in detail.
- 4.2.4. For regular impact monitoring, the sampling frequency of at least once in every six-days, shall be strictly observed at all the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.2.5. High volume samplers (HVSs) in compliance with the following specifications shall be used for carrying out the 1-hour and 24-hour TSP monitoring:
 - 0.6 1.7 m3 per minute adjustable flow range;
 - equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
 - installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
 - capable of providing a minimum exposed area of 406 cm2;
 - flow control accuracy: +/- 2.5% deviation over 24-hour sampling period;
 - equipped with a shelter to protect the filter and sampler;
 - incorporated with an electronic mass flow rate controller or other equivalent devices;
 - equipped with a flow recorder for continuous monitoring;
 - provided with a peaked roof inlet;
 - incorporated with a manometer;
 - able to hold and seal the filter paper to the sampler housing at horizontal position;
 - easily changeable filter; and
 - capable of operating continuously for a 24-hour period.
- 4.2.6. Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The concern parties such as IEC shall properly document the calibration data for future reference. All the data should be converted into standard temperature and pressure condition.

LABORATORY MEASUREMENT / ANALYSIS

- 4.2.7. A clean laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments to handle the dust samples collected, shall be available for sample analysis, and equipment calibration and maintenance. The laboratory should be HOKLAS accredited.
- 4.2.8. An alternative non-HOKLAS accredited laboratory was set-up for carrying out the laboratory analysis, the laboratory equipment was approved by the ER on 8 February 2011 and the measurement procedures were witnessed by the IEC. Any measurement performed by the laboratory was be demonstrated to the satisfaction of the ER and IEC. IEC shall regularly audit to the measurement performed by the laboratory to ensure the accuracy of measurement results.
- 4.2.9. Filter paper of size 8" x 10" shall be labelled before sampling. It shall be a clean filter paper with no pinholes, and shall be conditioned in a humidity-controlled chamber for over 24-hours and be pre-weighed before use for the sampling.
- 4.2.10. After sampling, the filter paper loaded with dust shall be kept in a clean and tightly sealed plastic bag. The filter paper shall then be returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with readout down to 0.1 mg. The balance shall be regularly calibrated against a traceable standard.
- 4.2.11. All the collected samples shall be kept in a good condition for 6 months before disposal.

IMPACT MONITORING FOR ODOUR PATROL

- 4.2.12. Odour patrols along the shorelines of Causeway Bay Typhoon Shelter and ex-Wan Chai Public Cargo Working Area when there is temporary reclamation in Causeway Bay Typhoon Shelter and/or in the ex-Wan Chai Public Cargo Working Area, or when there is dredging of the odorous sediment and slime at the south-western corner of the Causeway Bay Typhoon Shelter. Odour patrols will be carried out at bi-weekly intervals during July, August and September by a qualified person of the ET who shall:
 - · be at least 16 years of age;
 - · be free from any respiratory illnesses; and
 - not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30 min
 - before and during odour patrol
- 4.2.13. Odour patrol shall be conducted by independent trained personnel / competent persons patrolling and sniffing around the shore as shown in *Figure 4.1* to detect any odour at the concerned hours (afternoon is preferred for higher daily temperature).
- 4.2.14. The qualified person will use the nose (olfactory sensor) to sniff odours at different locations. The main odour emission sources and the areas to be affected by the odour nuisance will be identified.
- 4.2.15. The perceived odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:
 - 0 Not detected. No odour perceived or an odour so weak that it cannot be easily characterized or described;
 - 1 Slight Identifiable odour, and slight chance to have odour nuisance;

- 2 Moderate Identifiable odour, and moderate chance to have odour nuisance;
- 3 Strong Identifiable, likely to have odour nuisance;
- 4 Extreme Severe odour, and unacceptable odour level.
- 4.2.16. The findings including odour intensity, odour nature and possible odour sources, and also the local wind speed and direction at each location will be recorded. In addition, some relevant meteorological and tidal data such as daily average temperature, and daily average humidity, on that surveyed day will be obtained from the Hong Kong Observatory Station for reference. The Action and Limit levels for odour patrol are shown in *Appendix 6.1*.
- 4.2.17. The qualified odour patrol member has individual n-butanol thresholds complied with the requirement of European Standard Method of Air Quality Determination of Odour Concentration by Dynamic Olfactometry (EN13725) in the range of 20 to 80 ppb.

4.3 Water Quality Monitoring

- 4.3.1. The EIA Report has identified that the key water quality impact would be associated with the dredging works during the construction phase. Marine water quality monitoring for dissolved oxygen (DO), suspended solid (SS) and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works to ensure the compliance with the water quality standards.
- 4.3.2. The updated EM&A Manual for EP-356/2009 (Version in March 2011) is approval by EPD on 29 April 2011. As such, the Action Level and Limit Level for the wet season (April September) will be effected and applied to the water quality monitoring data from 30 April 2011.

Water Quality Monitoring Stations

4.3.3. It is proposed to monitor the water quality at 4 WSD salt water intakes and 8 cooling water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations of the Project are shown in *Table 4.4* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Table 4.4 Marine Water Quality Stations for Water Quality Monitoring

Station Ref.	Location	Easting	Northing			
WSD Salt Water Int	WSD Salt Water Intake					
WSD9	Tai Wan	837921.0	818330.0			
WSD17	Quarry Bay	839790.3	817032.2			
WSD19	Sheung Wan	833415.0	816771.0			
WSD21	Wan Chai	836220.8	815940.1			
Cooling Water Inta	ke					
C1	HKCEC Extension	835885.6	816223.0			
C7	Windsor House	837193.7	816150.0			
P1	HKCEC Phase I	835774.7	816179.4			
P3	The Academy of performing Arts	835824.6	816212.0			
P4	Shui on Centre	835865.6	816220.0			
P5	Government Buildings (Wanchai Tower / Revenue	835895.2	816215.2			

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

Station Ref.	Location	Easting	Northing
	Tower / Immigration Tower)		
RW21-P789	Great Eagle Centre/ Sun Hung Kai Centre/CWB	836268.0	816020.0

WATER QUALITY PARAMETERS

- 4.3.4. Monitoring of dissolved oxygen (DO), turbidity and suspended solids (SS) shall be carried out at WSD flushing water intakes and cooling water intakes. DO and Turbidity are measured in-situ while SS is determined in laboratory.
- 4.3.5. In association with the water quality parameters, other relevant data shall also be measured, such as monitoring location/position, time, sampling depth, water temperature, pH, salinity, dissolved oxygen (DO) saturation, weather conditions, sea conditions, tidal stage, and any special phenomena and work underway at the construction site etc.

SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.3.6. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.5* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.

Table 4.5 Marine Water Quality Monitoring Frequency and Parameters

Activities	Monitoring Frequency ¹	Parameters ²
During the 4-week baseline monitoring period	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
During marine construction works	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
After completion of marine construction works	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity

Notes:

- For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.
- 2. Turbidity should be measured in situ whereas SS should be determined by laboratory. DISSOLVED OXYGEN AND TEMPERATURE MEASURING EQUIPMENT
- 4.3.7. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.3.8. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement

- where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.3.9. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

TURBIDITY MEASUREMENT INSTRUMENT

4.3.10. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

SAMPLER

4.3.11. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).

SAMPLE CONTAINER AND STORAGE

4.3.12. Water samples for suspended solids measurement should be collected in high-density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

WATER DEPTH DETECTOR

4.3.13. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

SALINITY

4.3.14. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

MONITORING POSITION EQUIPMENT

4.3.15. A hand-held or boat-fixed type digital Global Positioning System (GPS) with waypoint bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

CALIBRATION OF IN-SITU INSTRUMENTS

4.3.16. All in-situ monitoring instrument shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.

- 4.3.17. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.3.18. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.3.19. Current calibration certificates of equipments are presented in *Appendix 4.2*.

LABORATORY MEASUREMENT / ANALYSIS

4.3.20. Analysis of suspended solids has been carried out in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd. Water samples of about 1L shall be collected at the monitoring stations for carrying out the laboratory SS determination. The SS determination work shall start within 24 hours after collection of the water samples. The SS determination shall follow APHA 19ed or equivalent methods subject to the approval of IEC and EPD.

ENHANCED WATER QUALITY MONITORING IN THE EX-WAN CHAI PUBLIC CARGO WORKING AREA AND THE CAUSEWAY BAY TYPHOON SHELTER

- 4.3.21. The enhanced water quality monitoring and audit programme is to avoid aggravation of odour nuisance from seawater arising from temporary reclamation in the ex-Wan Chai Public Cargo Working Area and the Causeway Bay Typhoon Shelter.
- 4.3.22. Dissolved oxygen monitoring at the intakes C6 and C7 in Causeway Bay Typhoon Shelter when there is temporary reclamation in Causeway Bay Typhoon Shelter and at the south-western and south-eastern corners of the ex-Wan Chai Public Cargo Working Area. The proposed water quality monitoring stations of the Project are shown in *Table 4.6* and *Figure 4.1*.

Table 4.6 Marine Water Quality Stations for Enhanced Water Quality Monitoring

Station	Location
C6	Excelsior Hotel
C7	Windsor House
Ex-WPCWA-SW	South-western of the ex-Wan Chai Public Cargo Working Area
Ex-WPCWA-SE	South-eastern of the ex-Wan Chai Public Cargo Working Area

4.3.23. The monitoring of dissolved oxygen are to be carried out 3 days per week, at mid-flood and mid-ebb tides for 3 water depths (1m below water surface, mid-depth and 1m above sea bed, except where the water depth less than 6m, the mid-depth may be omitted. If the water depth be equal to or less than 3m, only the mid-depth will be monitored).

DAILY SS MONITORING AND 24 HOURS TURBIDITY MONITORING SYSTEM

- 4.3.24. During dredging of the sediment at the south-western corner of the Causeway Bay Typhoon Shelter, daily monitoring of suspended solids and 24 hour monitoring of turbidity at the cooling water intakes (C6 and C7) shall be conducted.
- 4.3.25. The 24 hours monitoring of turbidty at the cooling water intakes (C6 and C7) shall be established by setting up a continuous water quality monitoring station in front of the intakes

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

during the dredging activities. The monitoring system include the turbidity sensor and data logger which is capable of data capturing at every 5 minutes. The data sahll be downloaded daily and compared with the Action and Limit level determined during the baseline water quality monitoring at the cooling water intake locations.

ADDITIONAL DISSOVLED OXYGEN MONITORING FOR CULVERT L WATER DISCHARGE FLOW

- 4.3.26. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored.
- 4.3.27. With respect to the commencement of dredging works under HK/2012/08 and the installation of MTR precast protection unit, the enhanced water quality monitoring for Culvert L was temporarily suspended since 24 July 2013
- 4.3.28. The monitoring of dissolved oxygen are to be carried out once per week, at mid-flood and mid-ebb tides for 3 water depths (1m below water surface, mid-depth and 1m above sea bed, except where the water depth less than 6m, the mid-depth may be omitted. If the water depth be equal to or less than 3m, only the mid-depth will be monitored).

5. Monitoring Results

- 5.0.1. The environmental monitoring will be implemented based on the division of works areas of each designed project managed under different contracts with separate FEP applied by individual contractors. Overall layout showing work areas of various contracts, latest status of work commencement and monitoring stations is shown in <u>Figure 2.1</u> and <u>Figure 4.1</u>. The monitoring results are presented in according to the Individual Contract(s).
- 5.0.2. In the reporting month, the concurrent contracts are as follows:
 - Contract no. HK/2009/01 Wan Chai Development Phase II Central-Wan Chai Bypass at Hong Kong Convention and Exhibition Centre; and
 - Contract no. HK/2009/02 Wan Chai Development Phase II Central-Wan Chai Bypass at Wan Chai East
 - Contract no. HY/2009/15 Central-Wanchai Bypass Tunnel (Causeway Bay Typhoon Shelter Section)
 - Contract no. HK/2010/06 Wan Chai Development Phase II Central-Wan Chai Bypass over MTR Tsuen Wan Line
 - Contract no. HY/2009/19- Cental- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
 - Contract no. HK/2012/08 Wan Chai Development Phase II Central- Wan Chai Bypass at Wan Chai West
 - Contract no. HY/2010/08 Central- Wanchai Bypass Tunnel (Slip Road 8 Section)
- 5.0.3. The environment monitoring schedules for reporting month and coming month are presented in *Appendix 5.1*.

5.1 Noise Monitoring Results

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC, Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East and Contract no. HK/2010/06 Wan Chai Development Phase II - Central-Wan Chai Bypass over MTR Tsuen Wan Line

5.1.1. The proposed division of noise monitoring stations are summarized in *Table 5.2* below.

Table 5.2 Noise Monitoring Station for Contract nos. HK/2009/01, HK/2009/02 and HK/2010/06

Station	Description
M1a	Harbour Road Sports Centre

- **5.1.2.** Daytime and evening period noise monitoring was conducted at the Harbour Road Sport Centre in the reporting month.
- 5.1.3. No exceedance was recorded in this reporting period. Details of noise monitoring results and graphical presentation can be referred in *Appendix 5.2*

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon

Shelter Section)

5.1.4. The noise monitoring for HY/2009/15 was commenced on 10 November 2010. The proposed division of noise monitoring stations are summarized in *Table 5.3* below.

Table 5.3 Noise Monitoring Station for Contract no. HY/2009/15

Station	Description		
M2b	Noon Gun Area		
М3а	Tung Lo Wan Fire Station		

5.1.5. Noise monitoring results measured in the period of daytime and restricted hour are reviewed and summarized. No exceedance was recorded in this reporting period. Details of noise monitoring results and graphical presentation can be referred in *Appendix 5.2*

Contract no. HY/2009/19- Wan Chai Bypass Tunnal (North Point Section) and Island Eastern Corridor Link

5.1.6. The proposed division of noise monitoring stations are summarized in *Table 5.4* below.

Table 5.4 Noise Monitoring Station for Contract no. HY/2009/19

Station	Description		
МЗа	Tung Lo Wan Fire Station		
M4b	Victoria Centre		
M5b	City Garden		
M6	HK Baptist Church Henrietta Secondary School		

- 5.1.7. Two limit level exceedances were recorded on 10 and 18 December 2013 at M6 HK Baptist Church Henrietta Secondary School in the reporting month.
- 5.1.8. Major traffic noise observed during monitoring on 10 and 18 December 2013 and it was considered as the major noise contribution. As such, the limit level exceedances were concluded as non-project related.
- 5.1.9. Noise monitoring results measured in this reporting period are reviewed and summarized. Details of noise monitoring results and graphical presentation can be referred in <u>Appendix</u> 5.2.

5.2 Real-time Noise Monitoring

Contract no. HY/2009/19 – Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

5.2.1 As the land-based piling and filling works- DP3 at Tin Hau had been completed on 3 September 2012 and confirmed by RSS, the real-time noise monitoring results at FEHD Hong

- Kong Transport Section Whitfield Depot was excluded under EP-356/2009 since 28 November 2012.
- 5.2.2 The real-time noise monitoring at RTN2-Oil Street Community Liaison Centre has been relocated to City Garden Electric Centre (RTN2a- Electric Centre) on 5 Oct 2012, which is a representative of noise sensitive receiver- City Garden. The baseline noise level of RTN2a will adopt the results derived from the baseline noise monitoring conducted in Electric Centre from 4 December 2009 to 17 December 2009.
- 5.2.3 The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011 and the FEP-01/356/2009 was surrendered on 22 Oct 2012.
- 5.2.4 Limit level exceedances were recorded at RTN2a-Electric Centre during restricted hours on 11 November 2013. After checking with contractor, no construction activity was conducted at the concerned location by the Contractor during the recorded period. As such, the exceedances were considered as non-project related and contributed by nearby IEC traffic.
- 5.2.5 Real-time noise monitoring at FEHD Hong Kong Transport Section Whitfield Depot commenced external wall renovation since 1 June 2012

Table 5.5 Real Time Noise Monitoring Station for Contract no. HY/2009/19

District	Station	Description	
Tin Hau	RTN1	FEHD Hong Kong Transport Section Whitfield Depot	
North Point	RTN2	Oil Street Community Liaison Centre	
North Point	RTN2a	Electric Centre	

- Real time noise monitoring results and graphical presentation during night time period are for information only.
- RTN2 had been relocated to RTN2a since 5 Oct 2012
- RTN1 monitoring had been finished on 28 Nov 2012
- 5.2.6 Details of real time noise monitoring results and graphical presentation can be referred to **Appendix 5.5.**

5.3 Air Monitoring Results

5.3.1. Due to electricity interruption, the 24hr TSP monitoring at CMA2a was rescheduled from 23 December 2013 to 24 December 2013.

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC</u>

5.3.2. Air monitoring was commenced on 1 April 2011 in response to the commencement of the land-filling work for Contract no. HK/2009/01. The proposed divisions of air monitoring stations are summarized in *Table 5.7* below. No exceedance was recorded in the reporting month.

Table 5.7 Air Monitoring Stations for Contract no. HK/2009/01

Station	Description	
CMA5a	Children Playgrounds opposite to Pedestrian Plaza	
CMA6a	WDII PRE Site Office	

Lam Geotechnics Limited

5.3.1 No exceedance was recorded in the reporting month. Air quality monitoring results measured in this reporting period are reviewed and summarized. Details of air monitoring results and graphical presentation can be referred in *Appendix 5.3*.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East</u>

5.3.3. Air monitoring was commenced in mid-January 2011 for the land-filling work for Contract no. HK/2009/02. The proposed division of air monitoring stations are summarized in *Table 5.8* below. No exceedance was recorded in the reporting month.

Table 5.8 Air Monitoring Station for Contract no. HK/2009/02

Station	Description	
CMA4a	Society for the Prevention of Cruelty to Animals	

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)</u>

5.3.4. Air monitoring was commenced on 15 March 2011 for the land filling work for Contract no. HY/2009/15. The proposed division of air monitoring stations are summarized in *Table 5.9* below.

Table 5.9 Air Monitoring Station for Contract no. HY/2009/15

Station	Description
СМАЗа	CWB PRE Site Office

5.3.2 No exceedance was recorded in the reporting month. Air quality monitoring results measured in this reporting period are reviewed and summarized. Details of air monitoring results and graphical presentation can be referred in *Appendix 5.3*.

Contract no. HY/2009/19- Wan Chai Bypass Tunnal (North Point Section) and Island Eastern Corridor Link

5.3.5. The proposed division of air monitoring stations are summarized in Table 5.10 below. No exceedance was recorded in the reporting month.

Table 5.10 Air Monitoring Stations for Contract no. HY/2009/19

Station	Description
CMA1b	Oil Street Site Office
CMA2a	Causeway Bay Community Centre

5.3.3 No exceedance was recorded in the reporting month. Air quality monitoring results measured in this reporting period are reviewed and summarized. Details of air monitoring results and graphical presentation can be referred in *Appendix 5.3*.

5.4 Water Monitoring Results.

- 5.4.1. Water quality monitoring station RW21-P789 has been implemented with respect to HK/2009/02 started on 29 July 2013.
- 5.4.2. With respect to status of cooling intakes relocation, WQM events on 22 April 2013 at monitoring stations C2, C3, C4e and C4w were temporarily suspended to confirm the commissioning status of the relocated pump stations with the WDII RSS and the IEC for preparation of relocation of the WQM stations to the relocated cooling intake pump stations
- 5.4.3. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others remain unchanged.
- 5.4.4. Based on the joint inspection on 4 Jan 2012 for the NPR area, the 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 to confirm no water deterioration with respect to NPR was commenced since 7 Jan 2012 and it was completed on 6 February 2012.
- 5.4.5. Water quality monitoring at WSD10 and WSD15 was temporary suspended while water quality monitoring at WSD9 and WSD17 was implemented with respect to HK/2009/02 from 8 Feb 12 onwards;
- 5.4.6. Due to the marine piling under Contract no. HY/2009/19 was completed on 4 March 2013, the temporary suspension of impact water quality monitoring at C8 and C9 from 4 March 2013 have been monitored for 4-week period after the completion of marine works to confirm no water deterioration.
- 5.4.7. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 to the closest accessible point prior to the completion of the external façade refurbishment work.
- 5.4.8. With respect to the trial dredging at WCR2 was scheduled on 20, 22, 24, 25 March and 1, 3, 11, 13, 15, 17, 19, 20 Apr and 3 May 2012, on-going water quality monitoring results at WSD21 during this period was checked and indicated that there was no contribution due to the trial dredging operation. Enhanced review of water quality around WCR2 was also implemented and no deterioration in the water quality was observed.
- 5.4.9. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
- 5.4.10. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha Tsui-DP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7

52

and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.

- 5.4.11. Due to the presence of obstacle within the inner silt curtain frame at sampling point, water quality point at C7 was finely adjusted to the outside of the inner silt curtain frame since 29 Dec 2012.
- 5.4.12. As confirmed by CWB RSS, the marine pilling works under contract HY/2009/19 was confirmed completed by 4 March 2013. The water quality monitoring at the respective monitoring stations C8 and C9 were temporarily suspended since 30 March 2013.
- 5.4.13. With respect to status of cooling intakes relocation, WQM events on 22 April 2013 at monitoring stations C2, C3, C4e and C4w were temporarily suspended to confirm the commissioning status of the relocated pump stations with the WDII RSS and the IEC for preparation of relocation of the WQM stations to the relocated cooling intake pump stations.
- 5.4.14. Upon confirmation with WDII RSS and the IEC, water quality monitoring at relocated intakes monitoring location P1, P3, P4 and P5 were commenced since 24 April 2013.

Table 5.11 Water Monitoring Stations for contracts with respect to remaining DP3 work areas after the completion of DP5 & DP6 in 2012 and intake diversion in 2013

Contract No.	Remaining DP3 and work area(s)	Relevant Water Monitoring Stations,	Division of WQM w.r.t tentative works commenced / to be commenced
HK/2009/01	WCR3	C1 ¹	Apr 2013
HK/2009/02	WCR3, WCR4, TWCR4	RW21-P789 ¹	Apr 2013
HK/2012/08	HKCEC2W, HKCEC2E	WSD19, P1 ³ , P3 ³ , P4 ³ , P5 ³	Aug 2013
HY/2009/15	TCBR2, TCBR3, TCBR1W, TPCWAE, TPCWAW	C6 ⁴ , C7, Ex-WPCWA SW, Ex-WPCWA SE (plus enhanced DO monitoring described in 4.6.3)	Nov 2010
HY/2010/08	TCBR3, TCBR4	C6 ⁴ , C7 (plus enhanced DO monitoring described in 4.6.3)	Mar 2014

Remarks:

- -The water monitoring stations for WSD19, P1, P3, P4, P5 shall be associated with Contract No. HK/2009/01 prior to their transition to Contract HK/2012/08.
- -4 intakes (re-provisioned Wanchai WSD intake, Great Eagle Centre, China Resources Centre & Sun Hung Kai Centre constructed adjacent to each other) taken as a single group for silt screen protection and monitoring.
- -Re-provisioned intake reference: P1: HKCEC Phase 1; P3: APA, P4: Shui On; P5: Government Buildings (Wanchai Tower / Revenue Tower / Immigration Tower)
- -Enhanced DO Monitoring at C6 since the intake abandon in May 2011.
- Contract no. HK/2009/01 Wan Chai Development Phase II Central -Wanchai Bypass at HKCEC
- 5.4.15. Water monitoring for Contract no. HK/2009/01 was commenced on 23 July 2010. The proposed division of water monitoring stations are summarized in *Table 5.12* below.

Table 5.12 Water Monitoring Stations for Contract no. HK/2009/01

Station Ref. Location		Easting	Northing			
Cooling Water Intake						
C1	HKCEC Extension	835885.6	816223.0			

Remarks:

- The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19, C1, C2, C3 and C4 if water quality monitoring at these locations have not been carried out by others.
- WSD7 and WSD20 water quality monitoring were temporarily suspended since 27 Apr 2012.
- C2, C3 C4e and C4w water quality monitoring station was temporarily suspended since 24 Apr 2013

<u>Contract no. HK/2009/02 - Wan Chai Development Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East</u>

5.4.16. Water monitoring for Contract no. HK/2009/02 was commenced on 8 July 2010. The proposed division of water monitoring stations are summarized in *Table 5.13* below.

Table 5.13 Water Monitoring Stations for Contract no. HK/2009/02

Station Ref.	Location	Easting	Northing			
WSD Salt Water Intake						
WSD21	Wan Chai	836220.8	815940.1			
WSD9	Tai Wan	837921.0	818330.0			
WSD17	Quarry Bay	839790.3	817032.2			
Cooling Water Intake						
RW21-P789	Great Eagle Centre/ Sun Hung Kai Centre/CWB	836268.0	816020.0			

Remarks:

- The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19, C1, C2, C3 and C4 if water quality monitoring at these locations has not been carried out by others.
- Water quality monitoring at WSD9 and WSD 17 was implemented with respect to HK/2009/02 from 8 Feb 2012.
- C5e and C5w water quality monitoring station was temporarily suspended since 29 July 2013

Contract no. HK/2012/08 - Wan Chai Development Phase II - Central- Wan Chai Bypass at Wan Chai West

5.4.17. Water monitoring for Contract no. HK/2012/08 was commenced on 5 March 2013. The proposed division of water monitoring stations are summarized in *Table 5.14* below.

Table 5.14 Water Monitoring Stations for Contract no. HK/2012/08

Station Ref.	Location	Easting	Northing		
WSD Salt Water Intake					

Station Ref.	Location	Easting	Northing
WSD19	Sheung Wan	833415.0	816771.0
Cooling Water Inta	ke		
P1	HKCEC Phase I	835774.7	816179.4
P3	The Academy of performing Arts	835824.6	816212.0
P4	Shui on Centre	835865.6	816220.0
P5	Government Buildings (Wanchai Tower / Revenue Tower / Immigration Tower)	835895.2	816215.2

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter Section)</u>

- 5.4.18. As the removal of reclamation work of TS1 at CBTS has been completed, all procedures have been rectified and complied with the conditions set in EP-356/2009 and FEP-04/356/2009.
- 5.4.19. Due to the commencement of the maintenance dredging on 10 November 2010, water quality monitoring for Contract no. HY/2009/15 was commenced on 9 November 2010. The proposed division of water monitoring stations are summarized in Table 5.15 below.
- 5.4.20. Due to the presence of obstacle within the inner silt curtain frame at sampling point, water quality point at C7 was finely adjusted to the outside of the inner silt curtain frame since 29 Dec 2012.

Table 5.15 Water Monitoring Stations for Contract no. HY/2009/15

Station Ref.	Location	Easting	Northing			
Cooling Water Intake						
C7	Windsor House	837193.7	816150.0			

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

Contract no. HY/2009/19 – Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- 5.4.21. Due to the commencement of the marine bored piling on 28 Jan 2012, water quality monitoring for Contract no. HY/2009/19 was commenced on 28 Jan 2012. The proposed division of water monitoring stations are summarized in *Table 5.16* below.
- 5.4.22. Due to the marine piling under Contract no. HY/2009/19 was completed on 4 March 2013, the temporary suspension of impact water quality monitoring at C8 and C9 from 4 March 2013 have been monitored for 4-week period after the completion of marine works to confirm no water deterioration.
- 5.4.23. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Center (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

- 5.4.24. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
- 5.4.25. As per the meeting with the representative of Excelsior Hotel and World Trade Centre on 17 May 2011, they confirmed that the seawater intake for The Excelsior was no longer in use and replaced by the connected permanent water supply from WSD pipelines since 11 January 2011. Thus, the impact water quality monitoring for the cooling intake C6 was terminated effective from 26 May 2011.
- 5.4.26. 24 hours monitoring of turbidity at the cooling water intakes at C7 was conducted. With respect to the seawall collapsing at TS4 on 17 November 2011, the 24 hours turbidity monitoring and was kept in November 2011. Since the reinstating the seawall was completed on 13 January 2012 and no any water deterioration was performed, 24 hour turbidity monitoring was then suspended on 27 January 2012.
- 5.4.27. Water monitoring results measured in this reporting period are reviewed and summarized.

 Details of water quality monitoring results and graphical presentation can be referred in

 Appendix 5.4.

Table 5.17 Summary of Water Quality Monitoring Exceedances in Reporting Month

	Water			Mid-	flood					Mid-	ebb		
Contract no.	Monitoring	D	0	Turb	idity	S	S	D	0	Turb	idity	S	S
	Station	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
HK/2009/01	C1	0	0	0	0	0	0	0	0	0	0	0	0
	WSD19	0	0	1	3	1	3	0	0	0	1	0	0
	P1	0	0	0	0	0	0	0	0	0	0	0	0
HK/2012/08	P3	0	0	0	0	0	0	0	0	0	0	0	0
	P4	0	0	0	0	0	0	0	0	0	0	0	0
	P5	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/02	WSD21	0	0	0	0	2	2	0	0	0	0	0	2
Monitoring started on 8 Feb 2012	WSD9	0	0	1	0	0	1	0	0	0	0	0	1
	WSD17	0	0	0	0	0	1	0	0	0	0	0	0
Monitoring started on 29 July 2013	RW21-P789	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/15 & HY/2010/08	C7	0	0	0	0	0	0	0	0	0	0	0	0
Total		0	0	2	2	3	6	0	0	0	1	0	3

- Remarks: The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.
 - WSD9 and WSD17 were implemented with respect to HK/2009/02 from 8 Feb 2012.
 - 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 were completed on 6 Feb 2012.
 - C8 and C9 were implemented with respect to HY/2009/19 from 28 Jan 2012.
 - C8 & C9 was temporary suspended on 30 March 2013 due to the marine works for Contract no. HY/2009/19 had been completed on 4 March 2013
 - WSD7 and WSD20 were temporarily suspended from 27 Apr 2012
 - C2, C3 C4e and C4w water quality monitoring station was temporarily suspended since 24 Apr 2013
 - C5e and C5w water quality monitoring station was temporarily suspended since 29 July 2013
- 5.4.28. Investigation found that the exceedances were not project-related. The details of the recorded exceedances can be referred to the **Section 6.4**.
- 5.4.29. Enhanced DO monitoring at 4 monitoring stations in Causeway Bay Typhoon Shelter and Ex-Public Cargo Works Area was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in *Table 5.18*.

Table 5.18 Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month

		Mid-f	lood	Mid-ebb	
Contract no.	Water Monitoring Station	DO		DO	
	. Oldion		LL	AL	LL
	C6	0	0	0	0
HY/2009/15	C7	0	0	0	0
111/2009/13	Ex-WPCWA SW	0	1	0	5
	Ex-WPCWA SE	1	0	0	5
Total		1	1	0	10

- 5.4.30. There were 1 action level exceedances and 11 limit level exceedances of enhanced dissolved oxygen recorded in this reporting month. Investigation found that the exceedances are not related to the Project works. The details of the recorded exceedances can be referred to the **Section 6.4**.
- 5.4.31. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored. Details of additional DO monitoring results can be referred in Appendix 5.4a.
- 5.4.32. With respect to the commencement of dredging works under HK/2012/08 and the installation of MTR precast protection unit, the enhanced water quality monitoring for Culvert L was temporarily suspended since 24 July 2013

5.5 Waste Monitoring Results

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC

5.5.1. Inert C&D waste was disposed and non- inert C&D waste was disposed of in this reporting month. Details of the waste flow table are summarized in *Table 5.19*.

Table 5.19 Details of Waste Disposal for Contract no. HK/2009/01

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	123.66	37540.655	TKO137, TM38
Inert C&D materials recycled, m ³	5000	10104.5	N/A
Non-inert C&D materials disposed,	37.51	1538.35	SENT Landfill

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
m ³			
Non-inert C&D materials recycled, kg	0	151143	N/A
Chemical waste disposed, kg	0	10050	N/A
*Marine Sediment (Type 1 – Open Sea Disposal), m ³	0 (Bulk Volume)	97428.2 (Bulk Volume)	South of Cheung Chau
* Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal), m ³	0 (Bulk Volume)	52250 (Bulk Volume)	East of Cha Chau
Dredged Sediment Requiring Type 3 – Special Treatment / Disposal contained in Geosynthetic Containers	0 (Bulk Volume)	6773 (Bulk Volume)	East of Cha Chau

5.5.2. There were no marine sediment Type 1- Open Sea Disposal and no marine sediments Type 1 - Open Sea Disposal (Dedicate Sites) & Type 2 - Confined Marine Disposal disposed in this reporting month.

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at Wan Chai East

5.5.3. Inert C&D waste and Non-inert C&D waste were disposed of in this reporting month. Details of the waste flow table are summarized in *Table 5.20*.

Table 5.20 Details of Waste Disposal for Contract no. HK/2009/02

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	364.69	242164.715	TKO137 / TM 38
Inert C&D materials recycled, m ³	NIL	18161	N/A
Non-inert C&D materials disposed, m ³	41.20	1250.60	SENT Landfill
Non-inert C&D materials recycled, m ³	N/A	N/A	N/A
Chemical waste disposed, kg	700	10936	SENT Landfill
Marine Sediment (Type 1 – Open Sea Disposal), m ³	0	184167 (Bulk volume)	South of Cheung Chau

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal) , m ³	0	129320 (Bulk volume)	East of Sha Chau

Remarks: Cumelative Quantity – to – Date of Non-inert C&D materials disposed and Chemical waste disposed was updated

5.5.4. There are no marine Sediment Type1- Open Sea Disposal and there are no Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal was disposed of in this reporting month.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)</u>

5.5.5. No Inert C&D waste and no non- inert C&D waste were disposed of in this reporting month.

Details of the waste flow table are summarized in *Table 5.21*

Table 5.21 Details of Waste Disposal for Contract no. HY/2009/15

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed,	NIL	141579.2	Tuen Mun Area 38
m ³	NIL	65216	TKO137 FB
Inert C&D materials recycled,	NIL	304	ex-PCWA
m^3	NIL	111.9	TS4
Non-inert C&D materials disposed, m ³	NIL	252.2	SENT Landfill
Non-inert C&D materials recycled, kg	NIL	299361.5	N/A
Chemical waste disposed, kg	NIL	8,200	N/A
Marine Sediment (Type 1 – Open Sea Disposal), m ³	0 (Bulk Volume)	100208 (Bulk Volume)	South of Cheung Chau
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal) , m ³	3730 (Bulk Volume)	226495 (Bulk Volume)	East of Sha Chau
Marine Sediment (Type 3 – Special Treatment / Disposal contained in Geosynthetic Containers)	590	8780 (Bulk Volume)	East of Sha Chau
Marine Sediment (Type 2 – Confined Marine Disposal), m3	0 (Bulk Volume)	9350 (Bulk Volume)	East of Sha Chau

5.5.6. There was no marine sediment Type 2 – Confined Marine Disposal was disposed of in this reporting month.

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central - Wan Chai Bypass over MTR Tsuen Wan Line

5.5.7. No inert C&D waste was disposed and no non-Inert C&D waste was recycled in this reporting month. Details of the waste flow table are summarized in *Table 5.22*.

Table 5.22 Details of Waste Disposal for Contract no. HK/2010/06

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	0	12567.88	TM38
Inert C&D materials recycled, m ³	NIL	267	HK/2009/01
Non-inert C&D materials disposed, m ³	0	369.48	SENT/TKO137SF
Non-inert C&D materials recycled, T	0	60.58	Recyclers
Chemical waste disposed, L	0	2600	N/A
Marine Sediment (Type 1 – Open Sea Disposal), m ³	0	3,891 (Bulk Volume)	South Cheung Chau
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal) , m ³	0	12,586 (Bulk Volume)	East Sha Chau

5.5.8. There were no marine sediments Type1- Open Sea Disposal and no Type 1 - Open Sea Disposal (Dedicate Sites) & Type 2 - Confined Marine Disposal was deposed of in this reporting month.

Contract no. HY/2009/19 –Central- WanChai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

5.5.9. Inert C&D waste was disposed of and non-inert C&D waste were disposed in this reporting month. Details of the waste flow table are summarized in *Table 5.23*.

Table 5.23 Details of Waste Disposal for Contract no. HY/2009/19

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	28256.18	299650.95	TM38
Inert C&D materials recycled, m ³	0	51347.97	N/A
Non-inert C&D materials disposed, m ³	42.47	560.07	N/A
Non-inert C&D materials recycled, kg	0	303.6	N/A
Chemical waste disposed, L	0.38	1.15	N/A

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Marine Sediment (Type 1 – Open Sea Disposal), m ³	0	162	South Cheung Chau
Marine Sediment (Type 2 – Confined Marine Disposal) , m ³	0	681	East Sha Chau
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal) , m3	0	4976.00	

Remarks: Cumelative Quantity – to – Date of Inert C&D materials disposed and Non-inert C&D materials disposed was updated

5.5.10. There was no marine sediment Type1- Open Sea Disposal and there was no Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal generated were disposed in this reporting month.

<u>Contract no. HK/2012/08 –Wan Chai Development Phase II – Central- Wan Chai Bypass at Wan Chai West</u>

5.5.11. Inert C&D waste was disposed and non-inert C&D waste were disposed in this reporting month. Details of the waste flow table are summarized in *Table 5.24*.

Table 5.24 Details of Waste Disposal for Contract no. HK/2012/08

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds	
Inert C&D materials disposed, m ³	0	1175	TM38	
Inert C&D materials recycled, m ³	NIL	NIL	N/A	
Non-inert C&D materials disposed, m ³	0	20	N/A	
Non-inert C&D materials recycled, kg	NIL	NIL	N/A	
Chemical waste disposed, L	NIL	NIL	N/A	
Marine Sediment (Type 1 – Open Sea Disposal), m ³	2140	25248	South of Cheung Chau	
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal) , m3	10834	106169	South of The Brothers (from 27 Aug 2013 onwards)	

5.5.12. There was marine sediment Type 1 – Open Sea Disposal and Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal generated were disposed in this reporting month.

Contract no. HY/2010/08 - Central - Wan Chai Bypass (CWB) - Tunnel (Slip Road 8)

5.5.13. No Inert C&D waste and non-inert C&D waste were disposed in this reporting month. Details of the waste flow table are summarized in *Table 5.25*

Table 5.25 Details of Waste Disposal for Contract no. HY/2010/08

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	Nil	Nil	N/A
Inert C&D materials recycled, m ³	NII	NIL	N/A
Non-inert C&D materials disposed, m ³	Nil	Nil	N/A
Non-inert C&D materials recycled, kg	NIL	NIL	N/A
Chemical waste disposed, L	NIL	NIL	N/A
Dumping Permit (Type 1 – Open Sea Disposal)	8420	8420	South Cheung Chau
Dumping Permit (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine disposal)	11120	11120	Brothers Island

5.5.14. There was marine sediment Type 1 – Open Sea Disposa and Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal generated were disposed in this reporting month.

6. Compliance Audit

6.0.1. The Event Action Plan for construction noise, air quality and water quality are presented in *Appendix 6.1*.

6.1 Noise Monitoring

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central –Wanchai Bypass at HKCEC</u>

6.1.1 No exceedance was recorded in the reporting month.

Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East

6.1.2 No exceedance was recorded in the reporting month.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter Section)</u>

6.1.3 No exceedance was recorded in the reporting month.

<u>Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wanchai Bypass over MTR Tsuen Wan Line</u>

6.1.4 No exceedance was recorded in the reporting month.

<u>Contract no. HY/2009/19 – Central – Wanchai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link</u>

6.1.5 Two limit level exceedances were recorded on 10 and 18 December 2013 at M6 – HK Baptist Church Henrietta Secondary School in the reporting month. Investigations found that on 10 and 18 December 2013, traffic noise was major contribution in the noise monitoring and exceedances were not related to the Project.

6.2 Real-time noise Monitoring

Contract no. HY/2009/19 – Central – Wanchai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

6.2.1 Limit level exceedances were recorded at RTN2a-Electric Centre during restricted hours on 30 November 2013. After checking with contractor, no noisy construction activities were conducted at the concerned location by the Contractor during the recorded period and the exceedances was non-continuous. As such, the exceedances were considered as non-project related and contributed by nearby IEC traffic and nearby non-CWB Project.

6.3 Air Monitoring

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II - Central - Wanchai Bypass at HKCEC</u>

6.3.1 No exceedance was recorded in the reporting month.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter Section)</u>

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

6.3.2 No exceedance was recorded in the reporting month.

Contract no. HY/2009/19 – Central – Wanchai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

6.3.3 No exceedance was recorded in the reporting month.

6.4 Water Quality Monitoring

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central –Wanchai Bypass at HKCEC</u>

6.4.1 There was turbidity and SS exceedance recorded at WSD19 on 30 November 2013, 4, 7, 9, 16 and 18 December 2013 during flood tide and ebb tide, confirmed with Contractor, silt screen was in proper condition. Dredging and filling for sewall rock mould formation works was conducted by Contractor HK/2012/08 during monitoring. Mitigation measures including framed silt curtain was confirmed in place. The exceedances was considered not project related.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East</u>

- 6.4.2 There were occasionally SS exceedances at WSD21 on 30 November 2013, 7, 13, 18 and 24 December 2013 during flood and ebb tide in this reporting month. Confirmed with Contractor, In view of no marine work was conducting duriing water quality monitoring. Silt screen was confirmed in order, the exceedances was considered not project related.
- 6.4.3 There were SS exceedances at WSD17 recorded on 17 December 2013 during flood tide in this reporting month. Confirmed with Contractor, in view that no marine work was conducted on those day, the exceedances was considered not project related.
- 6.4.4 There were occasionally turbidity and SS exceedances at WSD9 recorded on 9 and 21 December 2013 during flood and ebb tide in this reporting month. Confirmed with Contractor, in view of no marine works was conducted on that day and since WSD9 was located at the downstream of the Project, the water quality at monitoring stations located nearest the marine work site were well below the Action level, the exceedances was considered not project related.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter Section)</u>

6.4.5 There were occasionally DO exceedances at Ex-WPCWA SE and Ex-WPCWA SW recorded in this reporting month. No odour nuisance was noted during DO monitoring. After checking with Contractor, there was no marine work undertaken at ex-WPCWA. The exceedances were possible in relation to the accumulation of organic particles discharge from culvert near monitoring station and considered not related to the Projects works.

- 6.4.6 There were turbidity and SS exceedances at C7 recorded ion 4 December 2013. Installation of rebar for EVA at Eastern Breakwaterand dredging of type 2 marine sediment was conducted by contractor HY/2009/15 on that day. Mitigation measure including frame type silt curtain was confirmed in place. In view of no further exceedance was recorded in the next consecutive monitoring despite on-going marine works within same sampling date. The exceedance was considered as non-project related.
- 6.4.7 There were turbidity and SS exceedances at C7 recorded ion 16 December 2013. Underwater silt screen inspection was observed during water quality monitoring. According to on-site observation during sampling, it was considered that the dragging action of unwinding silt curtain installed around the silt screen could have impaired the water quality and lead to the abnormal turbidity and SS level. Contractor was advised to review the underwater silt screen inspection process as a propose to reduce the impact on water quality in the vicinity of water quality monitoring station. In view of no further exceedance was recorded in the next consecutive monitoring despite on-going marine works within same sampling date. The exceedance was considered as works-related

<u>Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wanchai Bypass over MTR Tsuen Wan Line</u>

6.4.8 No exceedance was recorded in this reporting month.

Contract no. HY/2009/19- Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

6.4.9 No exceedance was recorded in this reporting month.

<u>Contract no. HK/2012/08- Wan Chai Development Phase II – Central- Wan Chai Bypass at Wan Chai West</u>

6.4.10 There was turbidity and SS exceedance recorded at WSD19 on 30 November 2013, 4, 7, 9, 16 and 18 December 2013 during flood tide and ebb tide, confirmed with Contractor, silt screen was in proper condition. Dredging and filling for sewall rock mould formation works was conducted by Contractor HK/2012/08 during monitoring. Mitigation measures including framed silt curtain was confirmed in place. The exceedances was considered not project related.

Contract no. HY/2010/08 - Central - Wan Chai Bypass (CWB) - Tunnel (Slip Road 8)

6.4.11 There were turbidity and SS exceedances at C7 recorded ion 16 December 2013. Underwater silt screen inspection was observed during water quality monitoring. According to on-site observation during sampling, it was considered that the dragging action of unwinding silt curtain installed around the silt screen could have impaired the water quality and lead to the abnormal turbidity and SS level. Contractor was advised to review the underwater silt screen inspection process as a propose to reduce the impact on water quality in the vicinity of water quality monitoring station. In view of no further exceedance was recorded in the next

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

consecutive monitoring despite on-going marine works within same sampling date. The exceedance was considered as works-related

6.5 Review of the Reasons for and the Implications of Non-compliance

- 6.5.1 There was no non-compliance from the site audits in the reporting period. The observations and recommendations made in each individual site audit session were presented in Section 8.
- 6.5.2 No project-related non-compliance from monitoring was recorded in the reporting month.
- 6.6 Summary of action taken in the event of and follow-up on non-compliance
- 6.6.1 There was no particular action taken since no non-compliance was recorded from the site audits in the reporting period.

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

7. Cumulative Construction Impact due to the Concurrent Projects

- 7.0.1. According to Condition 3.4 of the EP-356/2009, this section addresses the relevant cumulative construction impact due to the concurrent activities of the current projects including the Central Reclamation Phase III, Central-Wanchai Bypass and Island Eastern Corridor Link projects.
- 7.0.2. According to the Monthly EM&A report (November 2013) of Central Reclamation Phase III (CRIII) for Contract HK 12/02, remaining footpath construction at Edinburgh Place were performed in the December 2013 reporting month. The water quality monitoring was completed in October 2011 and no Project-related exceedance was recorded for air and noise monitoring. It can be concluded that cumulative construction impact due to the concurrent activities of the current projects with the Central Reclamation Phase III (CRIII) was insignificant.
- 7.0.3. According to the construction programme of Wan Chai Development Phase II, Central-Wan Chai Bypass and Island Eastern Corridor Link projects, the major construction activity under Wan Chai Development Phase II were marine works at HKCEC areas, cross-harbour Watermains, Fresh Watermains and Cooling Watermains Installations, tunnel works at Wan Chai East. The major construction activities under Central-Wan Chai Bypass and Island Eastern Corridor Link Projects were ELS work and tunnel water proofing works at TS4 and cut and cover tunnel construction at TPCWAE. Bridge construction and tunnel works at Central Interchange, ELS segment launching works and IEC parapet demolition at North Point area. The major environmental impact was water quality impact at Causeway Bay and Wan Chai. Land-based construction activities were excavation at TS2, ELS work and tunnel water proofing works at TS4, cut and cover tunnel construction at TPCWAE, tunnel works at Central and ELS work at North Point and tunnel works at Wan Chai East in the reporting month.
- 7.0.4. The major environmental impacts generated from tunnel works at Central and tunnel works at Wan Chai East, IECL and Causeway Bay Typhoon Shelter were undertaken in the reporting month.. As no project related exceedance was recorded in the Project, it was considered no adverse environmental impact caused by the Project works. Thus, it is evaluated the cumulative construction impact was insignificant.

8. Environmental Site Audit

- 8.0.1. During this reporting month, weekly environmental site audits were conducted for Contracts no. HK/2009/01, HK/2009/02, HY/2009/15, HK/2010/06, HY/2009/19, HK/2012/08 and HY/2010/08. No non-conformance was identified during the site audits.
- 8.0.2. Four site inspections for Contract no. HK/2009/01 was carried out on 4, 11, 20, 23 December 2013 in reporting month. Results of these inspections and outcomes are summarized in Table 8.1.

Table 8.1 Summary of Environmental Inspections for Contract no. HK/2009/01

Item	Date	Observations	Action taken by Contractor	Outcome
131204_01	4-Dec-13	•	was cleared	Completion as observed on 11 Dec 2013
131220_01	20-Dec-13	Mud abd silt should be prevented from leakage into public road, mud and silt should be cleaned and oil stain should be cleaned as chemical waste (Convention Avenue)	was cleared	Completion as observed on 23 Dec 2013

8.0.3. Five site inspections for Contract no. HK/2009/02 was carried out on 28 November 2013, 5, 12, 18, and 23 December 2013 in reporting month. Results of these inspections and outcomes are summarized in Table 8.2.

Table 8.2 Summary of Environmental Inspections for Contract no. HK/2009/02

Item	Date	()hearyatione	Action taken by Contractor	Outcome
131223_01		l	Chemical container was removed	Completion as observed on 02 Jan 2014
131223_02			Oil drum have been removed.	Completion as observed on 02 Jan 2014

8.0.4. Four site inspections for Contract no. HY/2009/15 was carried out on 3, 10, 17 and 24 December 2013 in reporting month. The results of these inspections and outcomes are summarized in *Table 8.3*.

Table 8.3 Summary of Environmental Inspections for Contract no. HY/2009/15

Item	Date		Action taken by Contractor	Outcome
131203_01	3-Dec-13	Clear the leaked oil as chemical waste (TS2)	Chemical waste were removed	Completion as observed on 10 Dec 2013
131210_01	10-Dec-13		Proper collection point have been provided.	Completion as observed on 17 Dec 2013

Item	Date	Observations	Action taken by Contractor	Outcome
		(TS1)		
131210_02	10-Dec-13	Provide tapaulin sheet during excavaded material trasfer and clear the mud resting at the edge of barge.	Tarpualin sheet have been provided	Completion as observed on 17 Dec 2013
131217_01	17-Dec-13	Provide drip tray to oil containers and clear the leaked oil as chemical waste (TS2, TS4)	Drip trays were provided	Completion as observed on 24 Dec 2013
131217_02		Reinforce the embankment around critical area to prevent the runoff of concreting runoff to waterbody.	Embankment were reinforced to prevent runoff	Completion as observed on 24 Dec 2013

- 8.0.5. Four site inspections for Contract no. HK/2010/06 was carried out on 2, 9, 19 and 23 December 2013 in reporting month. No observation is found in the reporting month.
- 8.0.6. Four site inspections for Contract no. HY/2009/19 was carried out on 4, 12, 18 and 23 December 2013 in reporting month. No observation is found in the reporting month.
- 8.0.7. Four site inspections for Contract no. HK/2012/08 were carried out on 3, 10, 17 and 24 December 2013 in this reporting period. The results of these inspections and outcomes are summarized in *Table 8.5*.

Table 8.5 Summary of Environmental Inspections for Contract no. HK/2012/08

Item	Date	Observations	Action taken by Contractor	Outcome
131203_01		roots should be removed and	Objects placed around the tree roots have been removed.	Completion as observed on 10 Dec 2013.

8.0.8. Five site inspections for Contract no. HY/2010/08 was carried out on 28 November 2013, 5, 12, 19 and 27 December 2013 in this reporting period. The results of these inspections and outcomes are summarized in *Table 8.6*.

Table 8.6 Summary of Environmental Inspections for Contract no. HY/2010/08

Item	Date	Observations	Action taken by Contractor	Outcome
131128_01	28-Nov-13	Provide drip tray to oil drums	Drip trays were provided	Completion as observed on 05 Dec 2013
131219_01	19-Dec-13	Clear the muddy residue at site exit (Gate 3)	Mud residue was cleared	Completion as observed on 27 Dec 2013

9. Complaints, Notification of Summons and Prosecution

- 9.0.1. No environmental complaint was received in the reporting period.
- 9.0.2. The details of cumulative complaint log and updated summary of complaints are presented in *Appendix 9.1*
- 9.0.3. Cumulative statistic on complaints and successful prosecutions are summarized in *Table 9.1* and *Table 9.2* respectively.

Table 9.1 Cumulative Statistics on Complaints

Reporting Period	No. of Complaints
Commencement works (Mar 2010) to last reporting month	28
December 2013	0

Table 9.2 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	-	0	0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	0	0

10. Conclusion

- 10.0.1. The EM&A programme was carried out in accordance with the EM&A Manual requirements, minor alterations to the programme proposed were made in response to changing circumstances.
- 10.0.2. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others were remains unchanged.
- 10.0.3. As the land-based piling and filling works- DP3 at Tin Hau had been completed on 3 September 2012 and confirmed by RSS, the real-time noise monitoring results at FEHD Hong Kong Transport Section Whitfield Depot was excluded under EP-356/2009 since 28 November 2012.
- 10.0.4. The real-time noise monitoring at RTN2-Oil Street Community Liaison Centre has been relocated to City Garden Electric Centre (RTN2a- Electric Centre) on 5 Oct 2012, which is a representative of noise sensitive receiver- City Garden. The baseline noise level of RTN2a will adopt the results derived from the baseline noise monitoring conducted in Electric Centre from 4 December 2009 to 17 December 2009.
- 10.0.5. Water quality monitoring at WSD10 and WSD15 will be temporary suspended while water quality monitoring at WSD9 and WSD17 were implemented with respect to HK/2009/02 for the water quality monitoring scheduled on 8 Feb 12 onwards;
- 10.0.6. Due to the marine piling under Contract no. HY/2009/19 was completed on 4 March 2013, the temporary suspension of impact water quality monitoring at C8 and C9 from 4 March 2013 have been monitored for 4-week period after the completion of marine works to confirm no water deterioration.
- 10.0.7. Water quality monitoring at C8 & C9 was temporary suspended on 30 March 2013 due to the marine works for Contract no. HY/2009/19 had been completed on 4 March 2013, and conclude if any water deterioration had been identified during the 4-week water quality monitoring.
- 10.0.8. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.
- 10.0.9. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.

- 10.0.10. With respect to the trial dredging at WCR2 was scheduled on 20, 22, 24, 25 March and 1, 3, 11, 13, 15, 17, 19, 20 Apr and 3 May 2012, on-going water quality monitoring results at WSD21 during this period was checked and indicated that there was no contribution due to the trial dredging operation. Enhanced review of water quality around WCR2 was also implemented and no deterioration in the water quality was observed.
- 10.0.11. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha Tsui- DP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7 and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.
- 10.0.12. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 10.1*.

Table 10.1 Construction Activities and Recommended Mitigation Measures in Coming Reporting Month

Contract No.	Key Construction Works	Recommended Mitigation Measures
HK/2009/01	 Marine Works Import rock fill from HATS to extend the coastline at East of Area 8. The roof slab of bay 8 would be cast. Backfilling works at box culvert bay 8 and bay9 would be carried out for further road diversion works. Construction of RC structure proposed box culvert wall and roof slab at bay 8 and bay 9. D-wall construction at Stage 3. Outfall construction for discharge pipes at Expo Drive East. Waterworks (Cooling Watermains, Salt Watermains and Sewer) Salt watermain laying works for the works area in Zone A1-5B, A1-5C and A1-5A2 near Grand Hyatt hotel. Salt watermain laying works at Harbour Road would go further north to Zone A5-3, A5-4 and 	 To conform the installation and setting as in the silt screen deployment plan Frequency spray water on the dry dusty road and on the surface of concrete breaking To cover the dusty material or stockpile by impervious sheet To space out noisy equipment and position as far as possible from sensitive receiver. To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance. Machines and plant that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum Daily visual inspection of silt screen and silt curtain to ensure its operation properly

		Recommended Mitigation Measures
	 A5-6. Cooling main laying works along Expo Drive East and night works. Pedestrian relocation at the temporary steel bridge near junction of Expo Drive East and Convention Ave for cooling main laying works 	
	 Tunnel Works Stage 3 tunnel works include the installation of pre-bored H-pile and Stage 3 Southern D-wall construction. Demolition of the HKCEC Pump home. ELS for Stage 1 CWB. Backfilling Temporary Water Channel & Reclaim Land at CH220- CH260. 	
HK/2009/02	 Special movement joint rectification works for P8 discharge mains at CHBH152m. Hatch box replacement for P7 intake mains and cable relocation works for subsequent construction of 8x8 pit. All outstanding works for handing over P7, P8 and P9 Cooling Water Pumping Stations. The connection with the existing DN600 salt watermains at Hung Hing Road. The water tightness test for Salt Water Intake Culvert. Removal of temporary bulkhead 	 To cover the dusty material or stockpile by impervious sheet; Frequency spray water on the dry dusty road and on the surface of concrete breaking To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance and dark smoke emission To conform the installation and setting as in the silt screen and silt curtain deployment plan Movable noise barrier shall be deployed for demolition works Daily visual inspection of silt screen and silt curtain to ensure its operation properly Review silt screen deployment and silt curtain deployment and resubmit associate plans to EPD Implement silt screen and silt

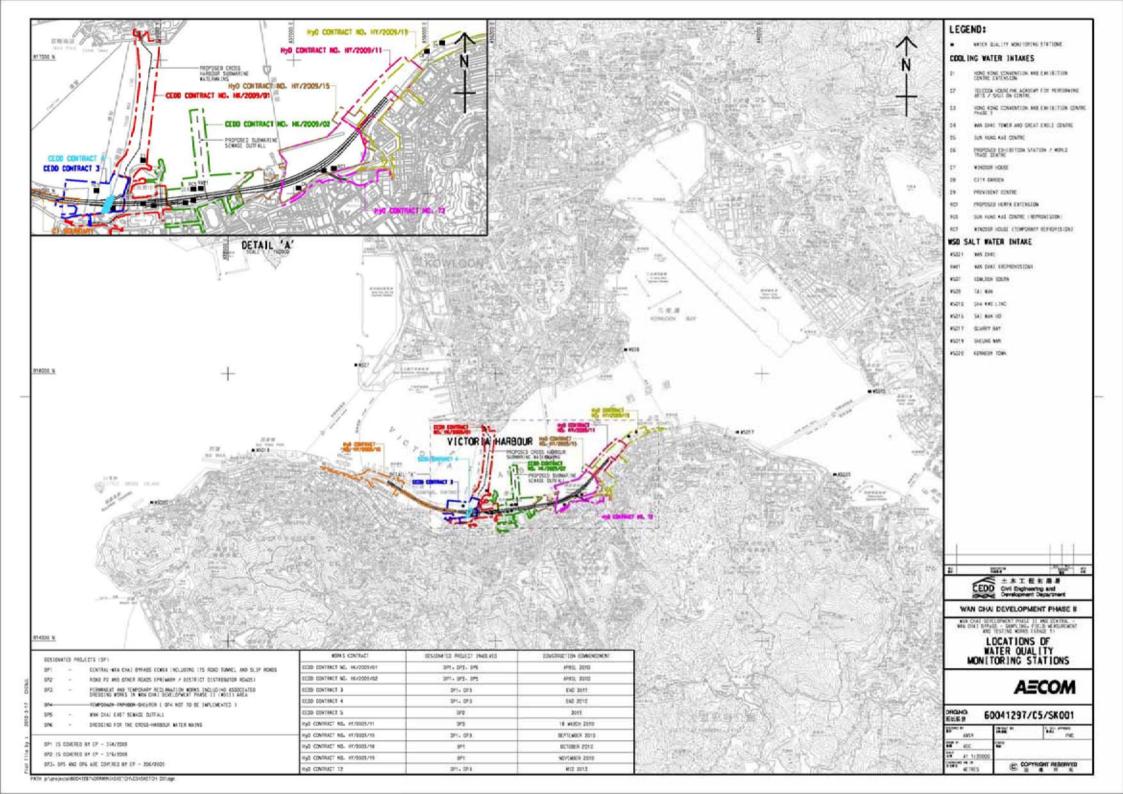
Lam Geotechnics Limited

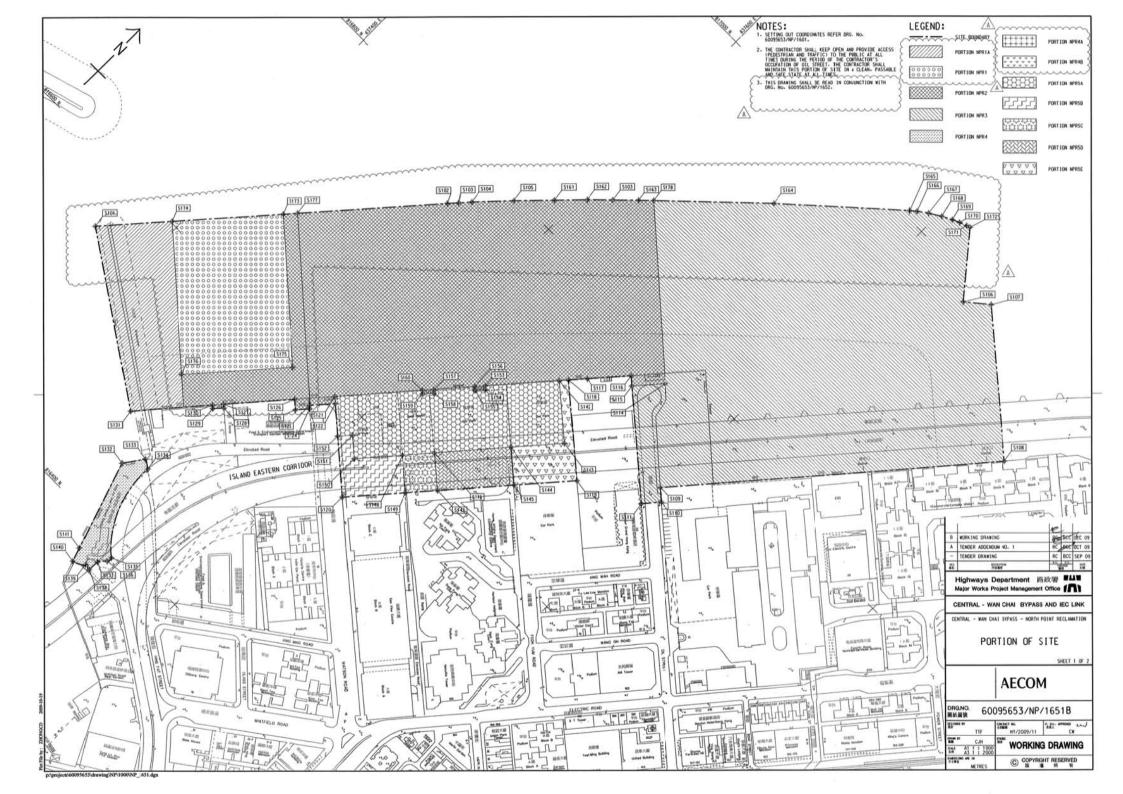
Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

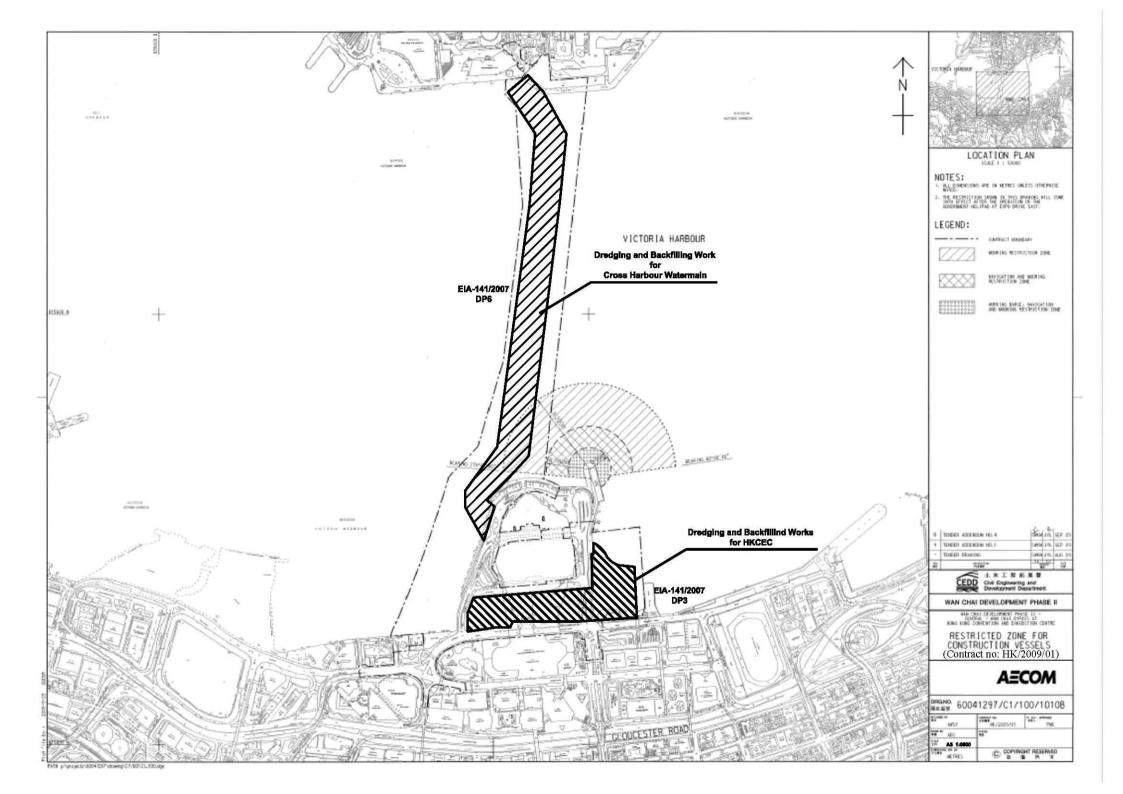
Contract No.	Key Construction Works	Recommended Mitigation Measures
	for commencement of wet test of	associated plans submitted to
	the WSD Salt Water Pumping	EPD.
	Station.	
	Wet test of the WSD Salt Water	
	Pumping Station and connection	
	with existing saltwater system at	
	Hung Hing Road.	
	Outstanding works at WSD Salt	
	Water Pumping Station.	
	Box Culvert N1 & Drain FRP-N	
	and the associated testing for	
	handing over to DSD	
	Drainage re-diversion from temp	
	1800 dia. drain to the completed	
	Box Culvert N1.	
	ABWF works in Ferry Pier.	
	Rectifying the defects in movable	
	ramps.	
	Most of the individual T&C of	
	E&M equipment at Ferry Pier	
	Utility installation works and EVA	
	construction extending from P7	
	Cooling Water Pumping Station	
	to the Ferry Pier.	
	 Construction of Temporary 	
	Covered Walkway footing at GL5	
	in the vicinity of Ferry Pier.	
	 Design verification works of the 	
	Eastern Bulkhead by the CSD	
	Designer for substantial handing	
	over to Section IXA of the Works.	
	Seawall blocks installation and	
	filling works at WCR4/TWCR4	
	after abandonment of existing	
	temp 1800 dia. drain at WCR4.	

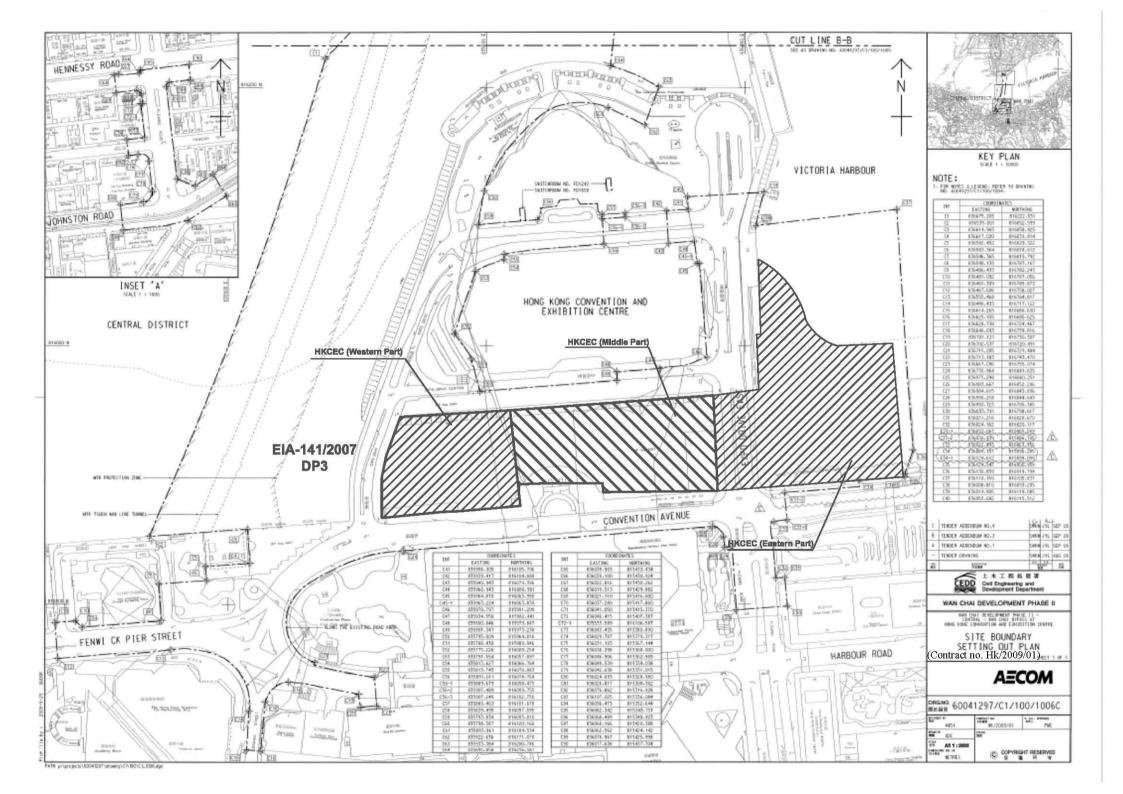
Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)

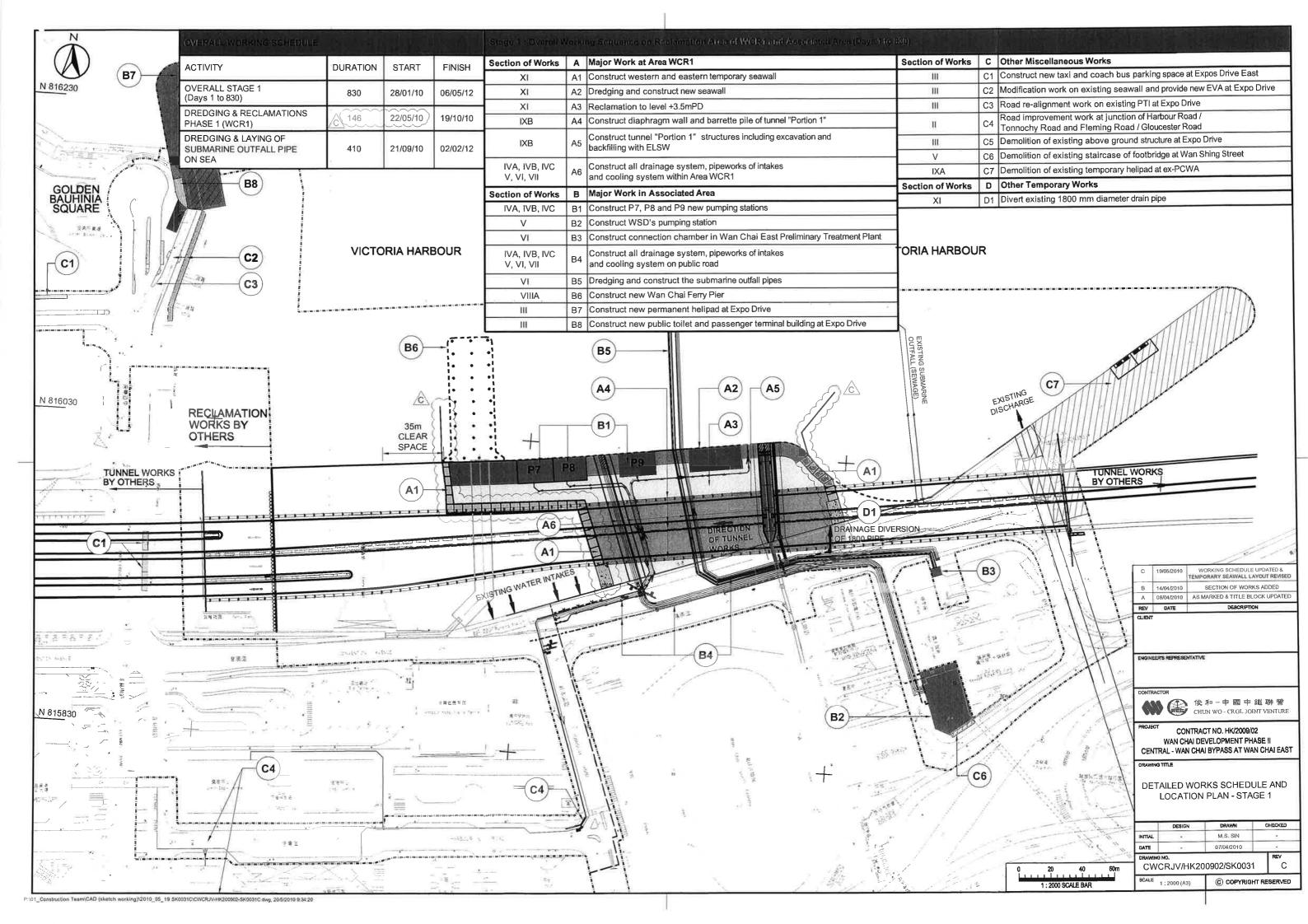
		Monthly EMAA Report (December 2013)
Contract No.	Key Construction Works	Recommended Mitigation Measures
HY/2009/15	Construction of EVA	 Daily visual inspection of silt screen and silt curtain to ensure its operation properly Implement silt screen and silt curtain in accordance with the associated plans submitted to EPD.
HK/2010/06	Sheet piling works	 To conform the installation and setting as in the silt screen and silt curtain deployment plan To space out noisy equipment and position as far as possible from sensitive receiver. Daily visual inspection of silt screen and silt curtain to ensure its operation properly
HY/2009/19	 Removal of strut at ELS will commence Construction works for Box Culvert T1 Removal of marine platform Construction of pile cap, pier & cross head (Marine) ELS, EVB and Cut & Cover Tunnel Installation of dewatering well Laying of 1500∮ pipe Launching of segments Extraction of temporary pile from marine section Construction of bridge truss TA1 	To conform the installation and setting as in the silt screen and silt curtain deployment plan
HK/2012/08	 Dredging ELS for box culvert La at Lung King Street Filling for seawall rock mound formation Filling for reclamation at sea area of former Expo Drive West Bridge Caisson seawall units installation Works for abandoning submarine sewerage outfall 	 To conform the installation and setting as in the silt screen and silt curtain deployment plan To space out noisy equipment and position as far as possible from sensitive receiver. Daily visual inspection of silt screen and silt curtain to ensure its operation properly

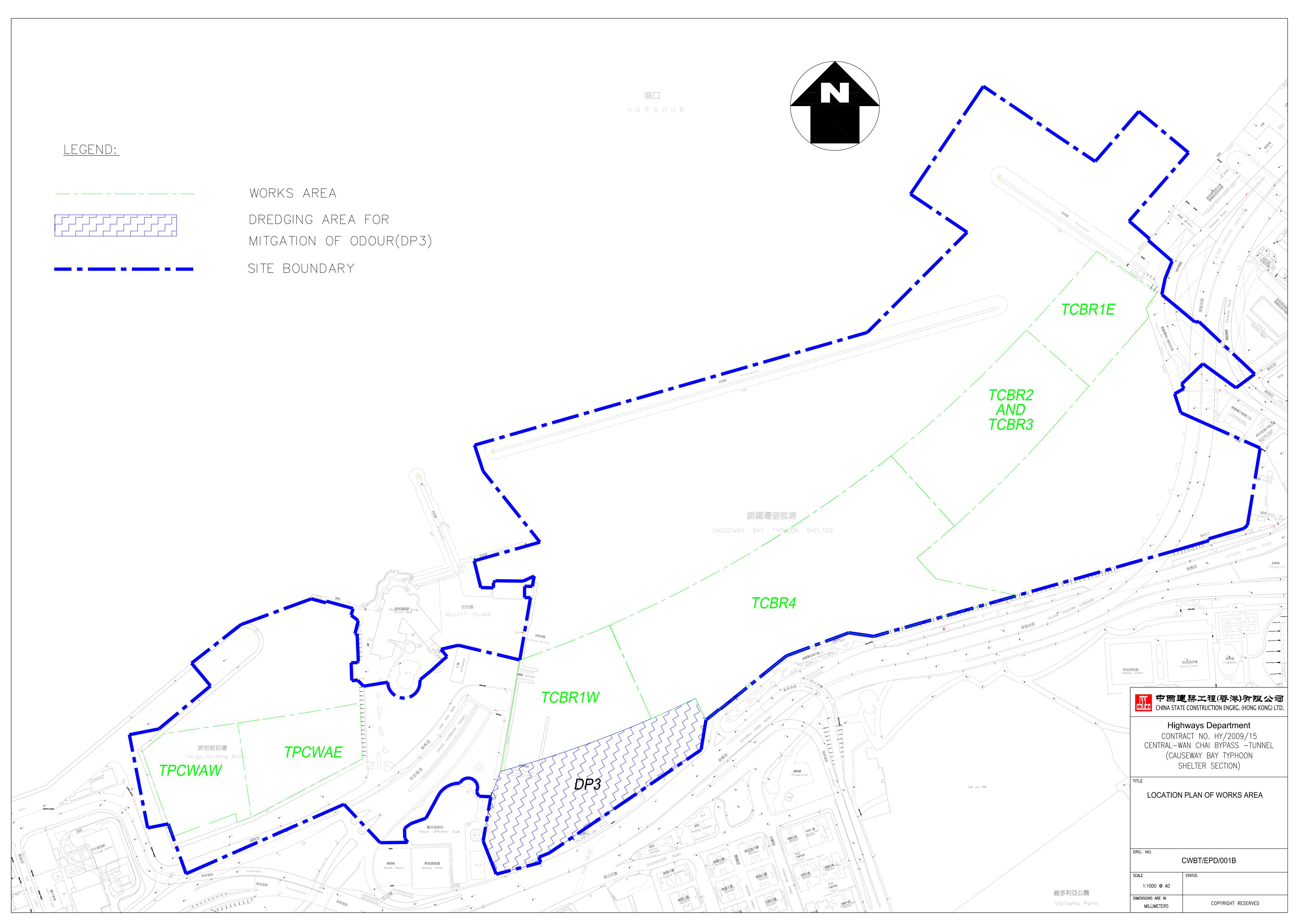

Lam Geotechnics Limited

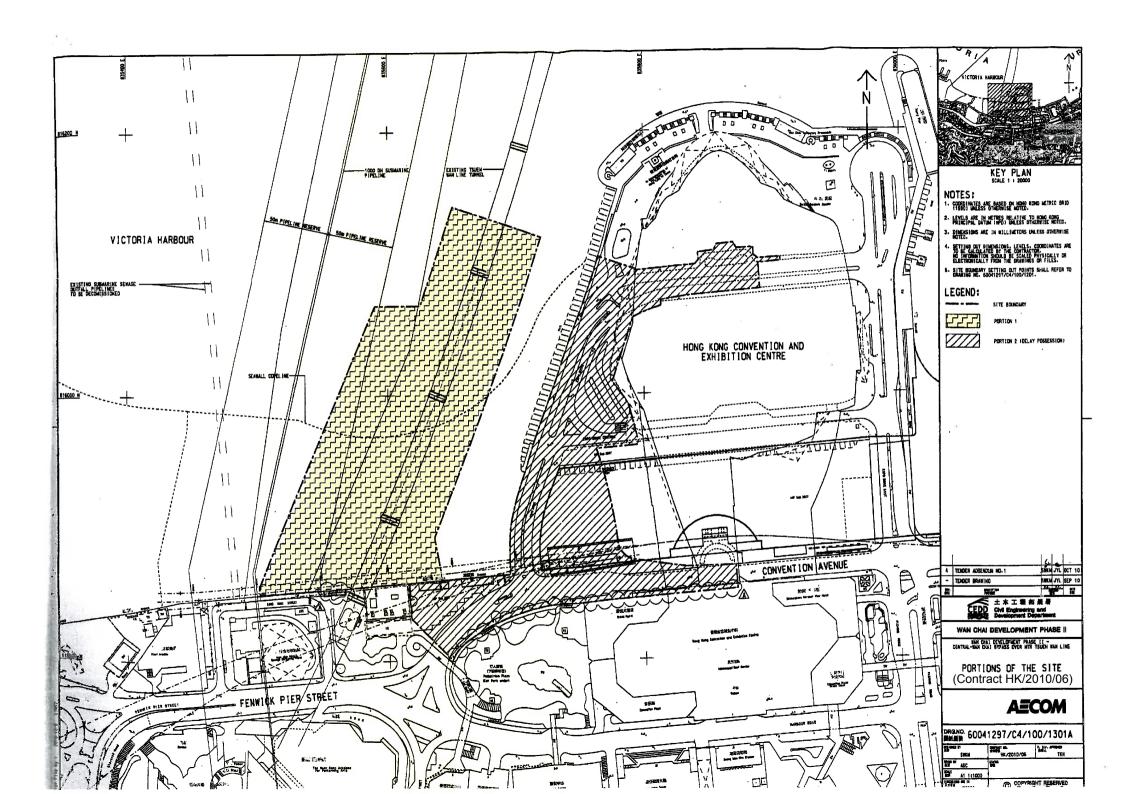

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (December 2013)


Contract No.	Key Construction Works	Recommended Mitigation Measures
HY/2009/08	Dredging works	To conform the installation and setting as in the silt screen and silt curtain deployment plan
		 Daily visual inspection of silt screen and silt curtain to ensure its operation properly


Figure 2.1


Project Layout





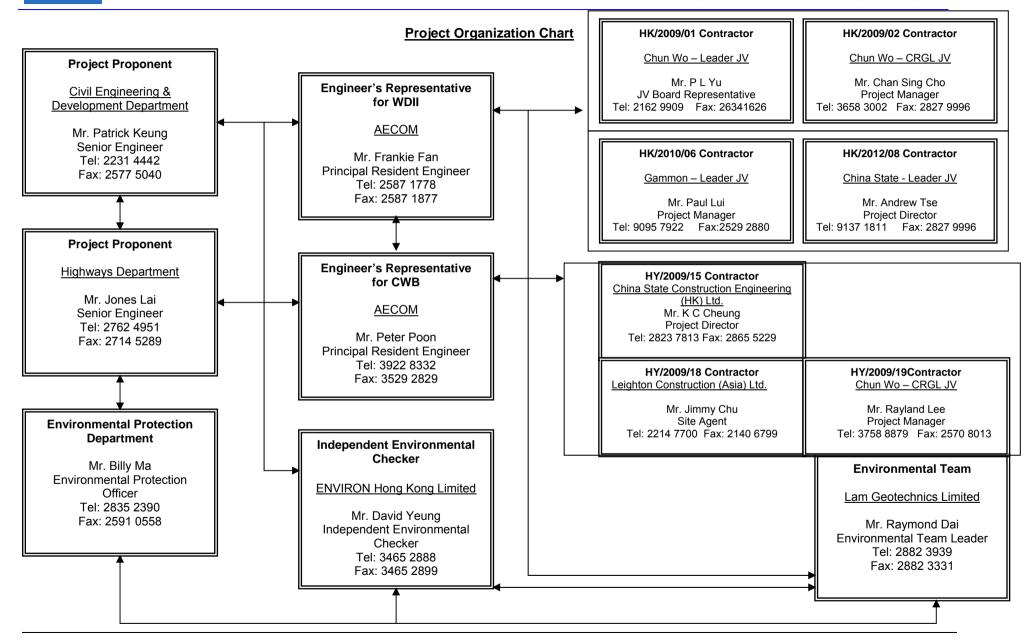
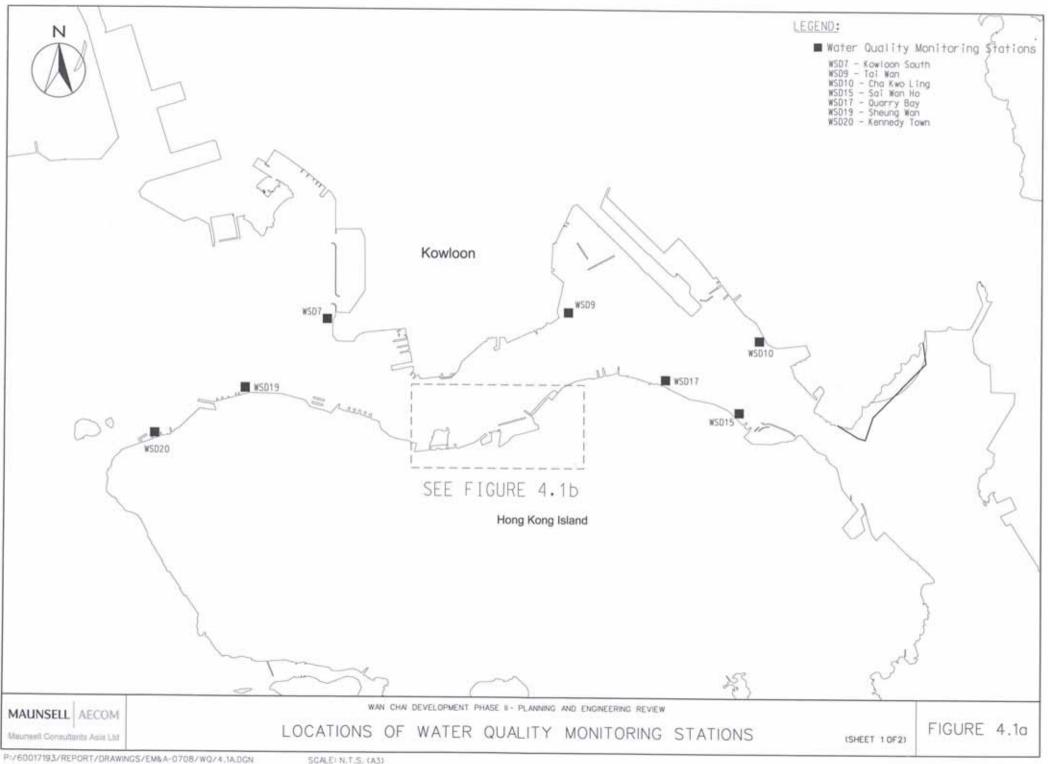
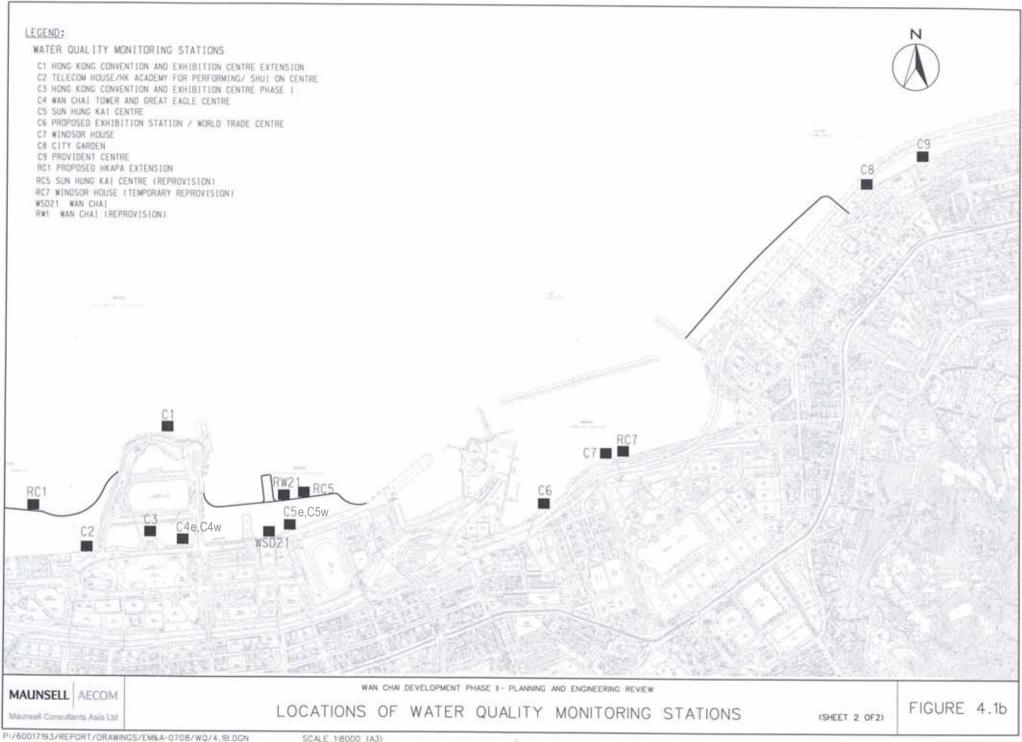


Figure 2.2


Project Organization Chart



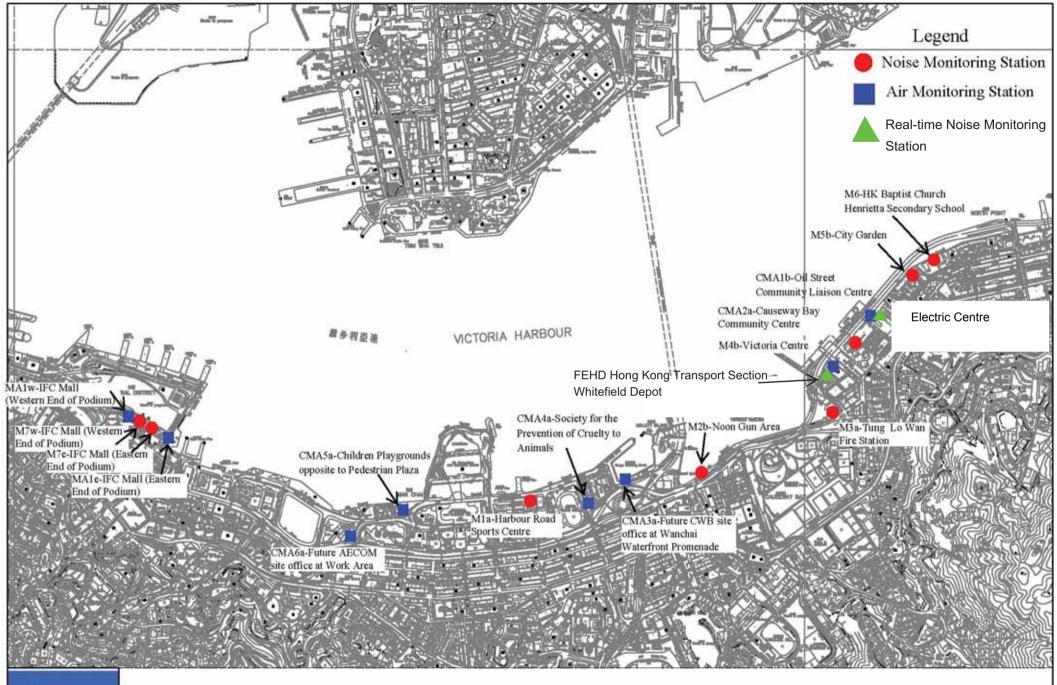
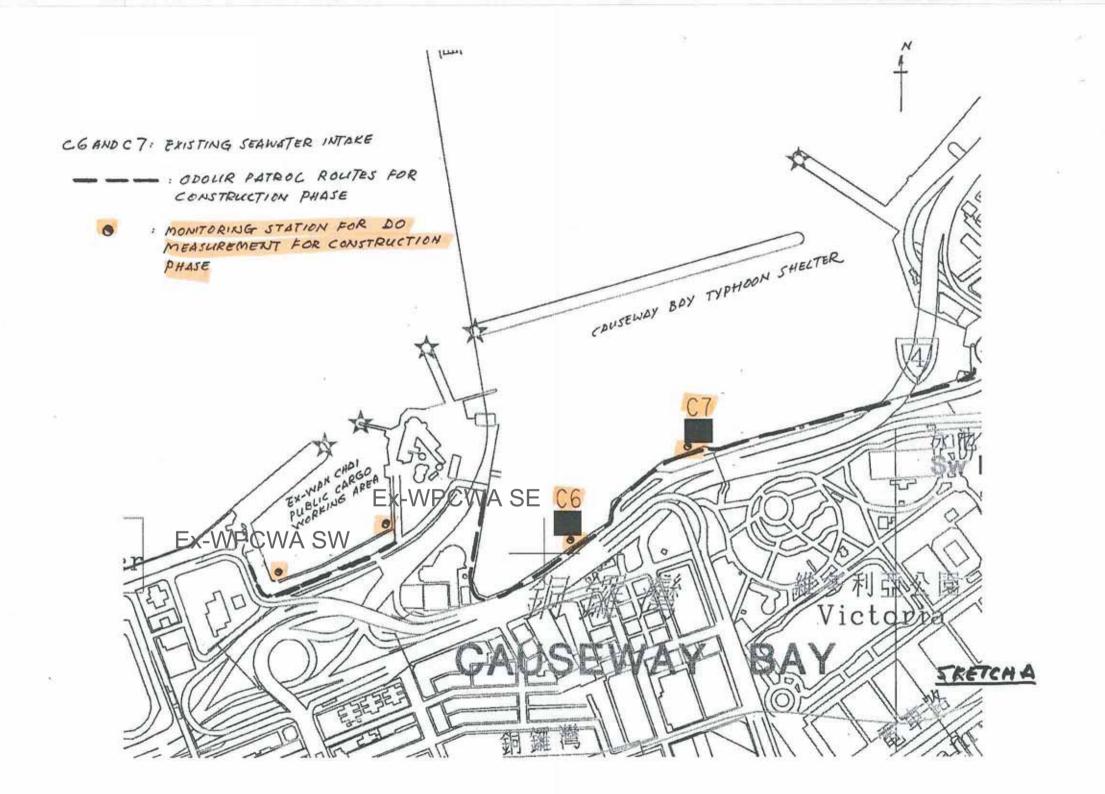
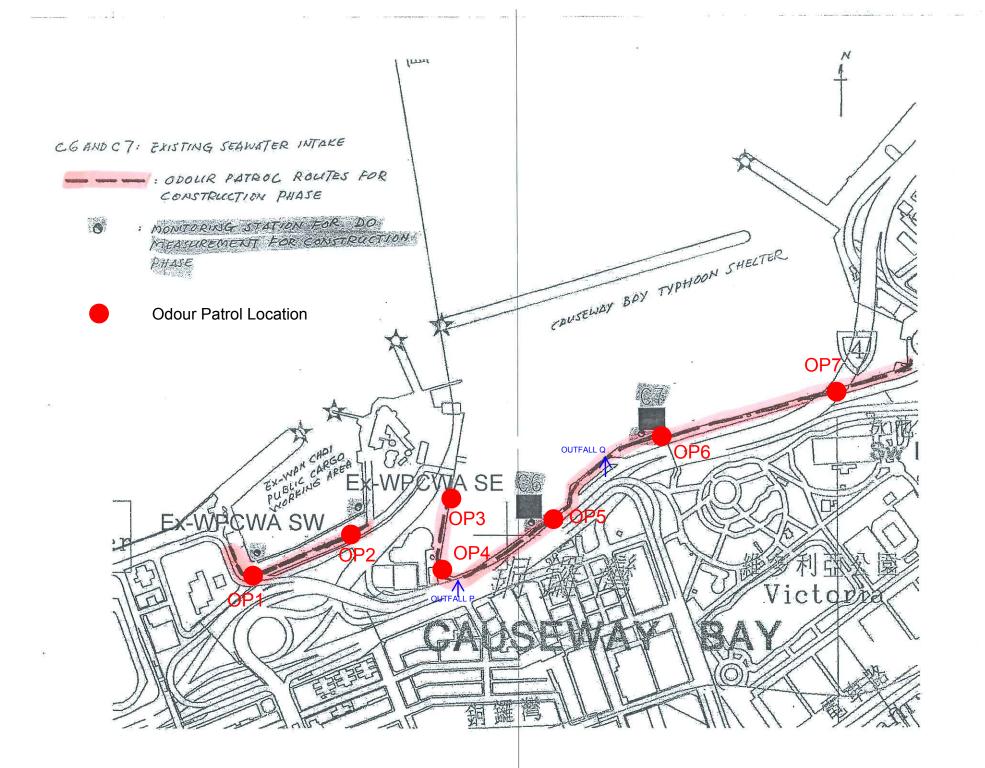
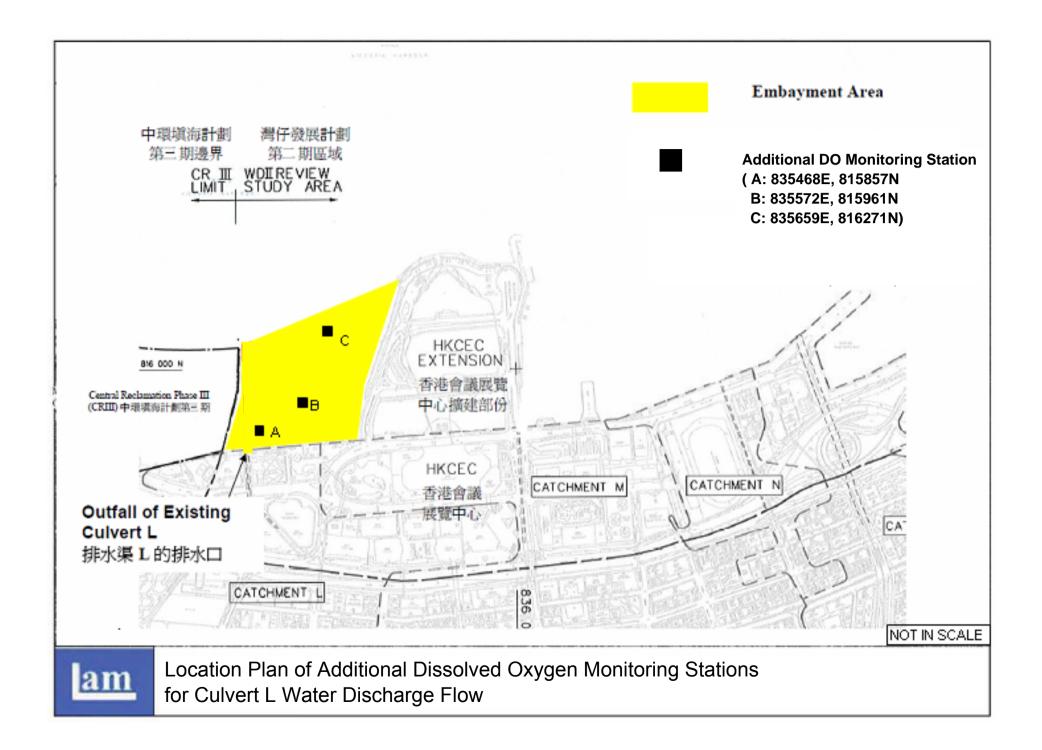


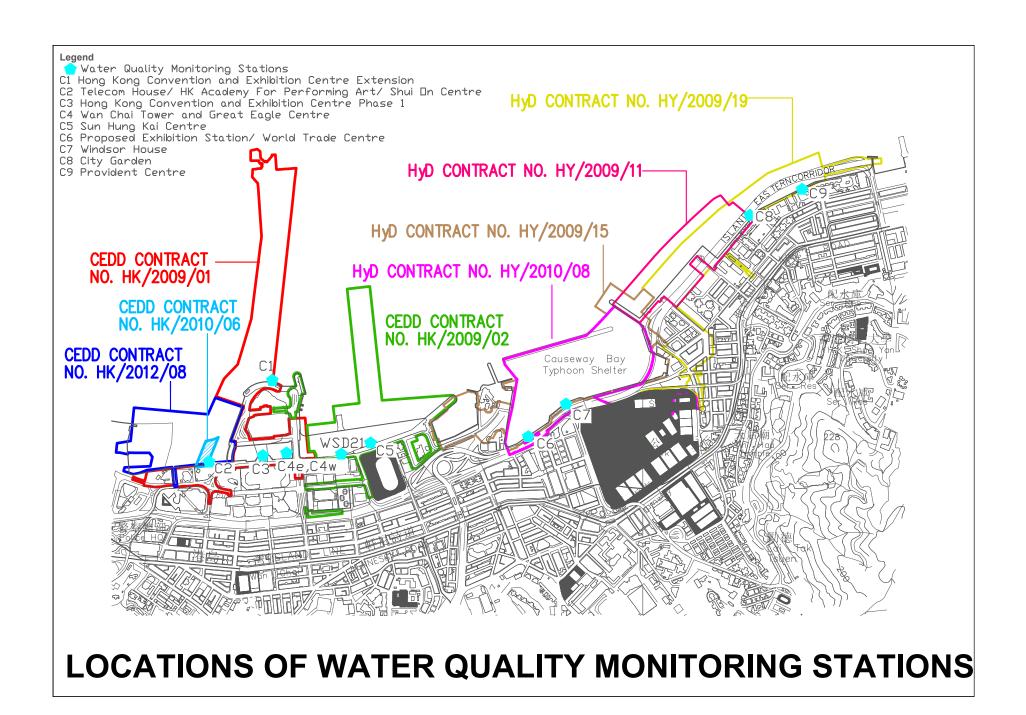
Figure 4.1

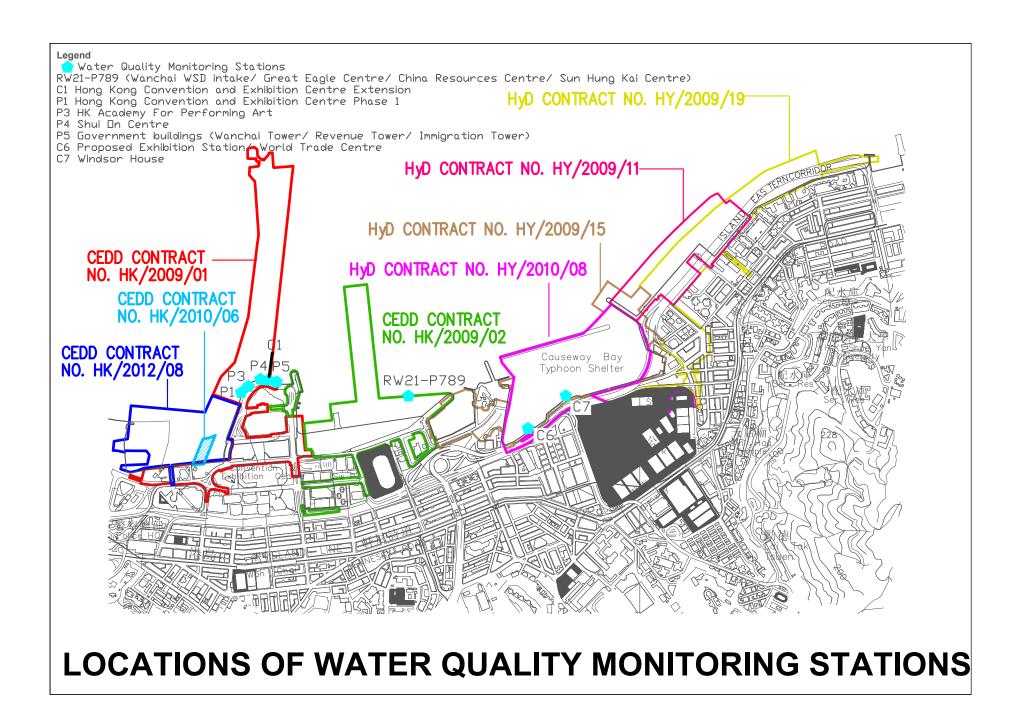
Locations of Monitoring Stations

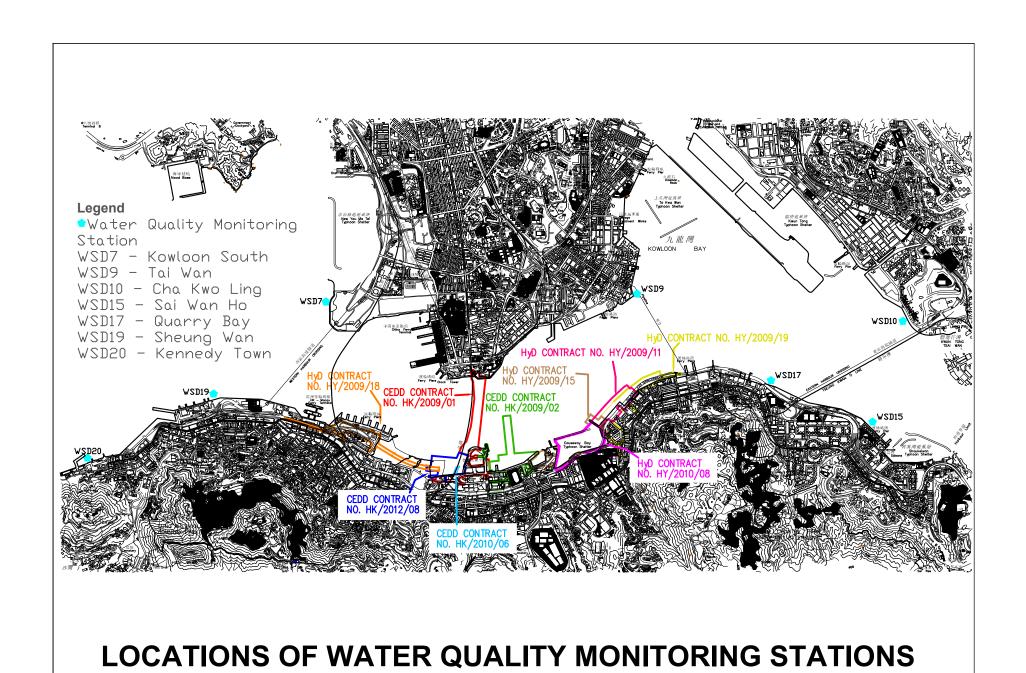


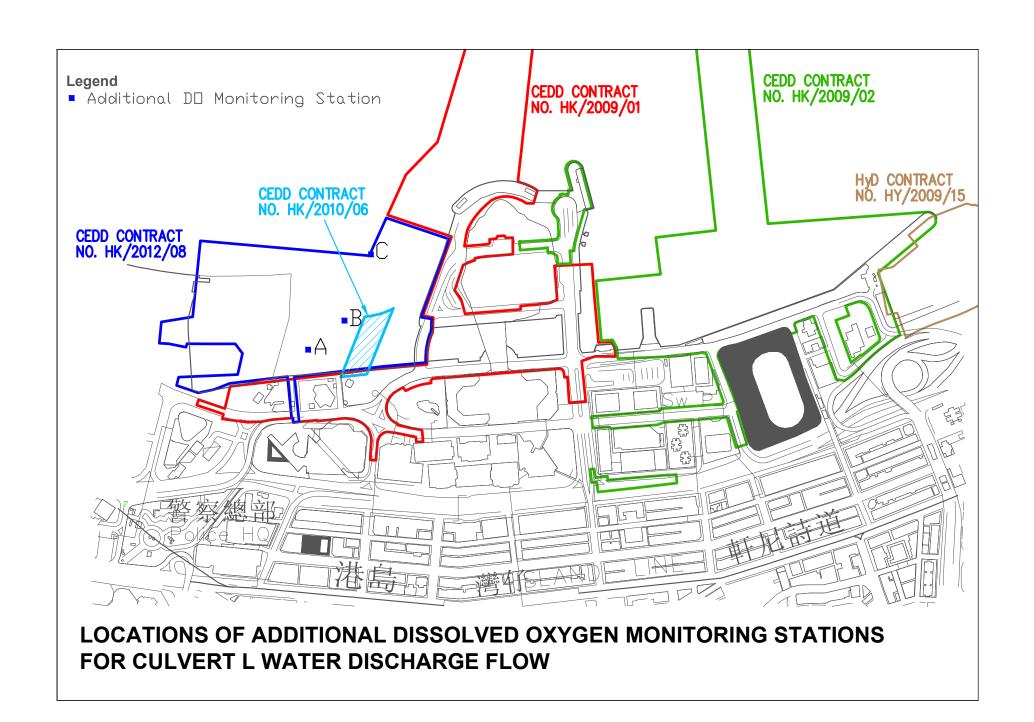





am


Location plan of Environmental Monitoring Stations





Appendix 3.1

Environmental Mitigation Implementation Schedule

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Environmental Mitigation Implementation Schedule

Implementation Schedule for Air Quality Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Implementatio Stages*			on	Relevant Legislation
		8	Agent	Des	C	o	Dec	and Guidelines
Constructio								
For the Who	ole Project							
S3.6.5	Four times a day watering of the work site with active operations.	Work site / during construction	Contractor		V			EIAO-TM
S3.8.1	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimise cumulative dust impacts. Strictly limit the truck speed on site to below 10 km per hour and water spraying to keep the haul roads in wet condition; Watering during excavation and material handling; Provision of vehicle wheel and body washing facilities at the exit points of the site, combined with cleaning of public roads where necessary; and Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.	Work site / during construction	Contractor		٨			

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation			entati ges*	on	Relevant Legislation
2111111	Zava omnestina i roccioni svenom co / svaniganion svenom co	Doewion, Timing	Agent	Des	C	0	Dec	and Guidelines
\$3.5.6	For the dredging activities carried out in the vicinity of Police Officers' Club, the dredging operation will be restricted to only 1 small close grab dredger to minimise the odour impact during the dredging activity. The dredging rate should be reduced as much as practicable for the area in close proximity to the Police Officers' Club. The sediments contain highly contaminated mud which may be disposed with the use of geosynthetic containers (details shall refer to Section 6), grab dredger has to be used for filling up the geosynthetic containers on barges. the dredging rate for the removal of the sediments at the south-west corner of the typhoon shelter shall be slowed down or restricted to specific non-popular hours in weekdays when it is necessary during construction.	Corner of CBTS/implementation of harbour-front enhancement	CEDD <u>1</u>		√			EIAO-TM
S3.8.8	Carry out dredging at the corner of CBTS to remove the sediment and clean the slime attached on the CBTS shoreline seawall	Corner of CBTS & CBTS shoreline seawall/implementation of harbour-front enhancement	CEDD ²		1			EIAO-TM
Operation I	Phase	I		1	1	1	1	I
For the Who	ole Project							·

¹ CEDD will identify an implementation agent.

 $^{^{\}rm 2}$ CEDD will identify an implementation agent.

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Impleme Stage			on	Relevant Legislation
		g	Agent	Des	C	О	Dec	and Guidelines
S3.10.2	Monthly (from July to September) monitoring of odour impacts, for a period of 5 years, is proposed during the operational phase of the Project to ascertain the effectiveness of the Enhancement Package over time, and to monitor any ongoing odour impacts at the ASRs.	Planned ASRs (CBTS Breakwater)/First 5-year period of operation phase	CEDD ¹			V		EIAO-TM
	CWB (Within the Project Boundary)	I	ı					T
S3.6.53 –	The design parameters of the East and Central Ventilation	East and Central	HyD					
S3.6.54	Buildings as set in Tables 3.10 and 3.11	Ventilation Buildings / During operation of the Trunk Road						
S3.10.2	Air quality monitoring for the operation performance of the East Ventilation Building and associated East Vent Shaft will be conducted.	East Vent Shaft / During operation of the East Ventilation Building and associated East Vent Shaft	HyD			V		EIAO-TM

• Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract no. HK/2011/07

 $\label{thm:chain} \mbox{Wan Chai Development Phase II and Central-Wanchai Bypass}$

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

Table A13.2 Implementation Schedule for Noise Control

Construction Phase	EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	1 .	entati ges* O	on Dec	Relevant Legislation and Guidelines
Construction I hase	Constructio	n Phase							

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation					
Ziii iidi	Zarra camera a roccosto a racessa es y racessa es cares a racessa es	Economy 11111111	Agent	Des	C	0	Dec	and Guidelines					
S4.9.4	Good Site Practice:	Work Sites / During	Contractor		√			EIAO-TM, NCO					
	Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program.	Construction											
	Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program.												
	Mobile plant, if any, shall be sited as far away from NSRs as possible.												
	Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or shall be throttled down to a minimum.												
	Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.												
	Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from onsite construction activities.												
For DP1 –	CWB (Within the Project Boundary)												

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation
		g	Agent	Des	C	О	Dec	and Guidelines
S4.8.5 S4.8.5	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: Slip road 8 tunnel Construction of diaphragm wall and substructures of the tunnel approach ramp Excavation Construction of slabs Backfill Demolition and construction of substructures for the IEC Demolition works of existing piers and crossheads of the marine section of the existing IEC Use of PME grouping for the following tasks: At-grade road construction Substructure for IECL connection	Work Sites / During Construction	Contractor		√			EIAO-TM, NCO
	WDII Major Roads (Road P2)							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: Temporary road diversion Resurfacing At-grade roadwork	Work Sites / During Construction	Contractor		√			EIAO-TM, NCO
For DP3 -	Reclamation Works							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following task: Filling behind seawall Seawall construction	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Ir	nplem Sta	entati ges*	Relevant Legislation	
		g	Agent	Des	C	О	Dec	and Guidelines
For DP5 –	Wan Chai East Sewage Outfall							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following tasks: • Submarine pipelines (marine section)	Work Sites / During Construction	Contractor		1			EIAO-TM, NCO
	Use of quiet powered mechanical equipment and movable noise barrier for the following tasks: Installation of a new pipeline (land section)							
For DP6 –	Cross-Harbour Water Mains from Wan Chai to Tsim Sha Tsui							
\$4.8.3 – \$4.8.4	Use of quiet powered mechanical equipment for the following tasks: • Submarine pipelines (marine section) •	Work Sites / During Construction	Contractor		N			EIAO-TM, NCO

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref			Implementation	In	ıplem Staş		Relevant Legislation	
			Agent	Des	C	0	Dec	and Guidelines
		_						
Operation 1	Phase							
For DP1 - 0	CWB (Within the Project Boundary)							

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Ir	nplem Sta	entati ges*	Relevant Legislation	
			Agent	Des	C	O	Dec	and Guidelines
S4.8.14 – S4.8.18	For Existing NSRs about 235m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC about 230m length of noise semi-enclosure with transparent panel covering the main carriageways (eastbound and westbound) of the CWB and IEC about 135m length of 5.5m high cantilevered noise barrier with 3m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC	Near North Point / Before commencement of operation of road project	HyD	√	√	√ ·		EIAO-TM
	 about 95m length of 5.5m high cantilevered noise barrier with 1m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC about 350m length of 3.5m high vertical noise barrier with transparent panel on the eastbound slip road to the IEC 	1						
	low noise road surfacing for the trunk road (except tunnel section and beneath the landscaped deck at the eastern portal area) with speed limit of 70 km/hour For Future/Planned NSRs about 265m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC	In between the Electric Centre (next to City Garden) and CDA(1) site / Before occupation of Planned NSRs in CDA and CDA(1) sites.	HyD	√	√#			

Appendix 3.1

Contract no. HK/2011/07

 $\label{thm:chain} \mbox{Wan Chai Development Phase II and Central-Wanchai Bypass}$

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta		on	Relevant Legislation
		mail Froteetion Measures / Minigation Measures Education / Timing	Agent	Des	C	О	Dec	and Guidelines
	• The openable windows of the temple, if any, should be	Near Causeway Bay Fire	Project	1				
	orientated so as to avoid direct line of sight to the existing	Station / During detailed	Proponent for					
	Victoria Park Road as far as practicable.	design of the re-	the					
		provisioned Tin Hau	re-provisioned					
		Temple	Tin Hau Temple					ļ

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

[#] Only the steel frame for this section of noise semi-enclosure would be erected in advance during the construction of the westbound slip road.

Table A13.3 Implementation Schedule for Water Quality Control

EIA Ref	Environmental Protection Measures / Mitigation Measures		Implementation Agent	Implementation Stages*				Relevant Legislation
Listics	Environmental Protection Measures / Mitigation Measures	Timing		Des	C	0	Dec	and Guidelines
Construction	on Phase							
For DP3 - Boundary)	Reclamation Works, DP5 (Wan Chai East Sewage Outfall), DP6 (Cross-Harbo	our Water Mains	from Wan Chai to T	sim Sh	a Tsu	i), DP	1 – CW	B (within the Project
S5.8	A phased reclamation approach is planned for the WDII. Containment of fill within each of the reclamation phases by seawalls is proposed, with the seawall constructed first (above high water mark) with filling carried out behind the completed seawalls. Any gaps that may need to be provided for marine access will be shielded by silt curtains to control sediment plume dispersion away from the site. Filling for seawall construction should be carried out behind the silt curtain	Work site / During the construction period	Contractor		√			EIAO-TM, WPCO
S5.8	Dredging shall be carried out by closed grab dredger for the following works: Seawall construction in all the reclamation areas; Construction of the CWB Tunnel Construction of the proposed WSD water mains; and Construction of the proposed Wan Chai East sewage outfall pipelines.	Work site / During the construction period	Contractor		1			EIAO-TM, WPCO
S5.8, Figure 5.3	Dredging for the Wan Chai East sewage outfall pipelines shall not be carried out concurrently with the following activities: Dredging along the proposed cross-harbour water mains; Dredging along the seawall in the Wan Chai Reclamation (WCR) zone (area between HKCEC Extension and PCWA).	Work site / During the construction period	Contractor		1			EIAO-TM, WPCO

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / N	rotection Measures / Mitigation Measures		Location /	Implementation	Ir		entat ges*	ion	Relevant Legislation
2	Environmental Protection (veasures) (virtigation (veasures)		Timing	Agent	Des	C	О	Dec	and Guidelines	
S5.8	The water body behind the temporary reclamations within the Causew typhoon shelter shall not be fully enclosed.			Work site / During the construction period	During the construction			EIAO-TM, WPCO		
S5.8	As a mitigation measure, to avoid the acc within the temporary embayment be impermeable barrier, suspended from a	tween CRIII and floating boom on the	HKCEC1, an ne water surface	Work site / During the construction	Contractor		√			EIAO-TM, WPCO
	and extending down to the seabed, will the HKCEC1 commences. The bar- discharge flows from Culvert L to the contractor will maintain this barrier HKCEC2W are carried out and the new C	period								
S5.8, Figure 5.3	The total dredging rates in each of the m than the maximum production rates state production rates without considering the	ed in the table below	v. These are the	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
	Reclamation Area	Maximum Dredging Rate	Maximum Dredging Rate							
	Reciamation Area	m³ per hour day (for 16 hrs per day)	(m³ per							
	Dredging along seawall or breakwater									
	North Point Shoreline Zone (NPR) 6,000 375 42,000									
	Causeway Bay TBW	1,500 94	10,500							
	Shoreline Zone TCBR	6,000 375	42,000							
	PCWA Zone	5,000 313	35,000		I	1	1	1	1	1

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Stages"				on	Relevant Legislation
21.1.10.	Zavionimi i veccioni vicandi co / vicaganoni vicandi co	Timing	Agent	Des	C	0	Dec	and Guidelines
	Wan Chai Shoreline Zone (WCR) 6,000 375 42,000 HKCEC Shoreline Zone HKCEC Stage 1 & 3 1,500 94 10,500 (HKCEC) HKCEC Stage 2 6,000 375 42,000 Cross Harbour Water Mains 1,500 94 10,500 Wan Chai East Submarine Sewage Pipeline 1,500 94 10,500 Note: 1,500 m³ per day shall be applied for construction of the western seawall of WCR1.							
S5.8, Figure 5.3	Dredging along the seawall at WCR1 shall be undertaken initially at 1,500m ³ per day for construction of the western seawall (which is in close proximity of the WSD intake), followed by partial seawall construction at the western seawall (above high water mark) to protect the adjacent intakes as much as possible from further dredging activities.	Work site / During the construction period	Contractor		1			EIAO-TM, WPCO
S5.8, Figure 5.3	For dredging within the Causeway Bay typhoon shelter, seawall shall be partially constructed to protect the nearby seawater intakes from further dredging activities. For example, at TCBRIW, the southern and eastern seawalls shall be constructed first (above high water mark) so that the seawater intakes at the inner water would be protected from the impacts from the remaining dredging activities along the northern boundary.	Work site / During the construction period	Contractor		1			EIAO-TM, WPCO
S5.8, Figure 5.3	Silt curtains shall be deployed around the closed grab dredgers during seawall dredging and seawall trench filling in the areas of HKCEC, WCR, TCBR and NP.	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	Silt screens shall be applied to seawater intakes at interim construction stages as stated below: Interim Construction Location of Applications	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In		entati ges*	on	Relevant Legislation
	8	Timing Agent Des C	О	Dec	and Guidelines			
	TBW, NP and Water Mains Zone Mains Zone Convention and Exhibition Centre Phase I, Telecor House / HK Academy for Performing Arts / Shun O Centre, Wan Chai Tower / Revenue Tower Immigration Tower and Sun Hung Kai Centre Scenario 2B in late 2009/2010 with concurrent dredging activities at Sewage Pipelines Zone and TCBR. Convention and Exhibition Centre Phase I, Telecor House / HK Academy for Performing Arts / Shun O Centre, Wan Chai Tower Inmigration Tower and Sun Hung Kai Centre WSD saltwater intakes at Sheung Wan, Wan Chai Cooling water intakes for Queensway Governmen Offices, Excelsior Hotel, World Trade Centre an Windsor House.	t t						
	Scenario 2C in 2011 with concurrent dredging activities at HKCEC and TCBR. WSD saltwater intakes at Sheung Wan an Reprovisioned WSD Wan Chai saltwater intake. Cooling water intakes for MTR South, Excelsic Hotel & World Trade Centre and reprovisione Windsor House.							
S5.8	Other mitigation measures include: mechanical grabs, if used, shall be designed and maintained to ave spillage and sealed tightly while being lifted. For dredging of a contaminated mud, closed watertight grabs must be used; all vessels shall be sized so that adequate clearance is maintained betwee vessels and the seabed in all tide conditions, to ensure that und	construction period	Contractor		7			ProPECC PN 1/94; WPCO (TM-DSS)
	turbidity is not generated by turbulence from vessel movement propeller wash; • all hopper barges and dredgers shall be fitted with tight fitting seals their bottom openings to prevent leakage of material;							
	construction activities shall not cause foam, oil, grease, scum, litter other objectionable matter to be present on the water within the site dumping grounds;							
	loading of barges and hoppers shall be controlled to prevent splashing dredged material into the surrounding water. Barges or hoppers shall r be filled to a level that will cause the overflow of materials or pollut water during loading or transportation; and	ot						

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In		entati ges*	on	Relevant Legislation
		Timing	Agent	Des	C	o	Dec	and Guidelines
	before commencement of the reclamation works, the holder of Environmental Permit has to submit plans showing the phased construction of the reclamation, design and operation of the silt curtain.							
\$5.8	Silt screens are recommended to be deployed at the seawater intakes during the reclamation works period. Installation of silt screens at the seawater intake points may cause a potential for accumulation and trapping of pollutants, floating debris and refuse behind the silt screens and may lead to potential water quality deterioration at the seawater intake points. Major sources of pollutants and floating refuse include the runoff and storm water discharges from the nearby coastal areas. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection shall be performed at the monitoring stations at regular intervals on a daily basis. The Contractor shall be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	Work site / During the construction period	Contractor		√			EIAO-TM, WPCO

Appendix 3.1

Contract no. HK/2011/07 Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In		entati ges*	on	Relevant Legislation
22.7.10.7	Zinyi olimetikii 1 (veettoi viettoi oli) ilingiittii veettoi veettoi oli veettoi veettoi veettoi oli	Timing	Agent	Des	C	0	Dec	and Guidelines
\$5.8	Dredging of contaminated mud is recommended as a mitigation measures for control of operational odour impact from the Causeway Bay typhoon shelter. In recognition of the potential impacts caused by dredging activities close to the seawater intakes, only I small close grab dredger shall be operated within the typhoon shelter (for the dredging to mitigate odour impact) at any time to minimize the potential impact. Double silt curtains shall be deployed to fully enclose the closed grab dredger during the dredging operation. In addition, an impermeable barrier, suspended from a floating boom on the water surface and extended down to the seabed, shall be erected to isolate the adjacent intakes as much as possible from dredging activities. For example, if dredging is to be carried out at the southwest corner of the typhoon shelter, physical barriers shall be erected to west of the cooling water intake for Excelsior Hotel so that the intake would be shielded from most of the Sgenerated from the dredging operation to the west of the intake. For area in close proximity of the cooling water intake point, the dredging rate shall be reduced as much as practicable. Site audit and water quality monitoring shall be carried out at the seawater intakes during the dredging operations. Daily monitoring of SS at the cooling water intake shall be carried out, and 24 hour monitoring of turbidity at the intakes shall be implemented during the dredging activities. If the monitoring results indicate that the dredging operation has caused significant changes in water quality conditions at the seawater intakes, appropriate actions shall be taken to stop the dredging and mitigation measures such as slowing down the dredging rate shall be implemented.	Causeway Bay typhoon shelter/Imple mentation of harbour-front enhancement.	CEDD <u>3</u>		1			WPCO

EIA Ref	Er	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In		entati ges*	on	Relevant Legislation															
			Timing	Agent	Des	C	0	Dec	and Guidelines															
For the Wh	ole 1	Project																						
S5.8	•	Construction Runoff and Drainage	• Work site / During	Contractor		√			ProPECC PN 1/94; WPCO (TM-DSS)															
	•	use of sediment traps, wheel washing facilities for vehicles leaving the site, and adequate maintenance of drainage systems to prevent flooding and overflow;	the constructi						Wied (III Bas)															
	•	Permanent drainage channels shall incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94;	-																					
	•	a sediment tank constructed from pre-formed individual cells of approximately 6 - 8 m3 capacity can be used for settling ground water prior to disposal;																						
	•	oil interceptors shall be provided in the drainage system for the tunnels and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor shall have a bypass to prevent flushing during periods of heavy rain;													e or			e r						
	•	precautions and actions to be taken when a rainstorm is imminent or forecast, and during or after rainstorms. Particular attention shall be paid to the control of any silty surface runoff during storm events;																						
	•	on-site drainage system shall be installed prior to the commencement of other construction activities. Sediment traps shall be installed in order to minimise the sediment loading of the effluent prior to discharge;																						
	•	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge shall be adequately designed for the controlled release of storm flows. All sediment control measures shall be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage shall be reinstated to its original condition when the construction work is finished or the temporary diversion is no longer																						

 $^{^{\}rm 3}$ CEDD will identify an implementation agent.

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	Implementation Stages*				Relevant Legislation
	8	Timing	Agent	Des	C	0	Dec	and Guidelines
	required.							
	All fuel tanks and store areas shall be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity.							
	Minimum distances of 100 m shall be maintained between the storm water discharges and the existing or planned WSD flushing water intakes during construction phase.							
S5.8	Sewage from Construction Work Force Construction work force sewage discharges on site shall be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage shall be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site / During the construction period	Contractor		V			ProPECC PN 1/94; WPCO (TM-DSS)
S5.8	Floating Debris and Refuse Collection and removal of floating refuse shall be performed at regular intervals on a daily basis. The contractor shall be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.	Work site and adjacent water / During the construction period.	Contractor		1			WPCO

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In		entati ges*	on	Relevant Legislation
		Timing	Agent	Des	C	О	Dec	and Guidelines
\$5.8	Storm Water Discharges Minimum distances of 100 m shall be maintained between the existing or planned stormwater discharges and the existing or planned WSD flushing water intakes.	Work site and adjacent water / During the design and construction period.	Contractor	1	√ ·			WPCO
Operation 1	Phase							
	3 (within the Project Boundary)							
S5.8	For the operation of CWB, a surface water drainage system would be provided to collect road runoff. The following operation stage mitigation measures are recommended to ensure road runoff would comply with the TM under the WPCO: The drainage from tunnel sections shall be directed through petrol interceptors to remove oil and grease before being discharged to the	CWB/During design and operational period	HyD/TD ³	1		1		WPCO
	nearby foul water manholes. Petrol interceptors shall be regularly cleaned and maintained in good working condition.							
	Oily contents of the petrol interceptors shall be properly handled and disposed of, in compliance with the requirements of the Waste Disposal Ordinance.							
	Sewage arising from ancillary facilities of CWB (for examples, car park,							

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In	1 .	entatio ges*	on	Relevant Legislation and Guidelines
	Zinyi olilientai 1 Totottoi ili zina katoo / Managattoi Managattoi ili zina katoo / Managattoi ili zina katoo /	Timing	Agent	Des	C	О	Dec	
	control room, ventilation and administration buildings and tunnel portals) shall be connected to public sewerage system. Sufficient capacity in public sewerage shall be made available to the proposed facilities. • Road drainage shall also be provided with adequately designed silt trap to minimize discharge of silty runoff. • The design of the operational stage mitigation measures for CWB shall take into account the guidelines published in ProPECC PN 5/93 "Drainage Plans subject to Comment by the EPD." All operational discharges from the CWB into drainage or sewerage systems are required to be licensed by EPD under the WPCO.							

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

 $^{^{\}rm 3}$ if employ Management, Operation and Maintenance (MOM) Contract

Table A13.4 Implementation Schedule for Waste Management

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Ir		entati ges*	on	Relevant Legislation
			Agent	Des	C	О	Dec	and Guidelines
Construction	on Phase							
For DP3 -	Reclamation Works							
	Marine Sediments	Work site / During the construction period	Contractor		V			ETWB TCW No. 34/2002
S6.7.2	The dredged marine sediments would be loaded onto barges, transported to and disposed of at the designated disposal sites at South of Cheung Chau, East of Ninepin, East of Tung Lung Chau, South of Tsing Yi or East of Sha Chau to be allocated by the MFC depending on their level of contamination or at other disposal sites after consultation with the MFC and EPD. In accordance with the ETWB TCW No. 34/2002, the contaminated material must be dredged and transported with great care. The mitigation measures recommended in Section 5 of the EIA Report shall be incorporated. The dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the Type 2 confined marine disposal contaminated mud pit.							
S6.7.3	Based on the biological screening results, the Category H (>10xLCEL) sediment which failed the biological testing would require Type 3 special disposal. The volume of Category H sediment from the Causeway Bay typhoon shelter which would require special disposal arrangements is estimated to be approximately 0.05 Mm³. A feasible containment method is proposed whereby the dredged sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal.							

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Ir	nplem Sta	entati ges*	Relevant Legislation	
2111101	Zavinomina i roccioni vicasuros / vinagation vicasuros	Economy 1 mmg	Agent	Des	C	0	Dec	and Guidelines
S6.7.5	It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, at least 3 months prior to the dredging contract being tendered							
\$6.7.6	During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water quality: Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.							

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
		g	Agent	Des	C	o	Dec	and Guidelines
	Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation.							
S6.6.12	Floating Refuse During the construction phase, the project proponent's contractor will be responsible for the collection of any refuse within their works area. Floating booms will be provided on the water surface to confine the refuse from the working barges as well as to avoid the accumulation of pollutants within temporary embayment as mentioned in Table 13.3.	Work site / During the construction period	Contractor		√			
For the Wh	ole Project		•					

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation and Guidelines
EIA KCI	Environmental Proceedon Measures / Mitigation Measures	Location / Timing	Agent	Des	C	О	Dec	
S6.7.7	Recommendations for good site practices during the construction activities include: nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; training of site personnel in proper waste management and chemical waste handling procedures; provision of sufficient waste disposal points and regular collection for disposal; appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and a recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	Work site / During the construction period	Contractor		1			Waste Disposal Ordinance (Cap.354)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Ir		entati ges*	on	Relevant Legislation
			Agent	Des	C	О	Dec	and Guidelines
S6.7.8	Waste Reduction Measures Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: • segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;	Work site / During planning and design stage, and construction stage	Contractor	V	√			
	to encourage collection of aluminium cans, PET bottles and paper, separate labelled bins shall be provided to segregate these wastes from other general refuse generated by the work force;							
	any unused chemicals or those with remaining functional capacity shall be recycled;							
	use of reusable non-timber formwork, such as in casting the tunnel box sections, to reduce the amount of C&D material.							
	prior to disposal of C&D waste, it is recommended that wood, steel and other metals shall be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;							
	proper storage and site practices to minimise the potential for damage or contamination of construction materials; and							
	plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.							

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
	· ·	8	Agent	Des	C	О	Dec	and Guidelines
S6.7.10	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D material. A collection area shall be provided where wastes can be stored and loaded prior to removal from site. An enclosed and covered area is recommended to reduce the occurrence of 'wind blow' light material.	Work site / During the construction period	Contractor		V			Public Health and Municipal Services Ordinance (Cap. 132)
S6.7.11	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) shall be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals shall be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During the construction period	Contractor		V			Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
S6.7.12	Construction and Demolition Material C&D material shall be sorted on-site into inert C&D material (that is, public fill) and C&D waste. All the suitable inert C&D material shall be broken down to 250 mm in size for reuse as public fill in the WDII reclamation. C&D waste, such as wood, glass, plastic, steel and other metals shall be reused or recycled and, as a last resort, disposed of to landfill. A suitable area shall be designated to facilitate the sorting process and a temporary stockpiling area will be required for the separated materials.	Work site / During the construction period	Contractor		1			ETWB TCW No. 33/2002, 31/2004, 19/2005

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
			Agent	Des	C	o	Dec	and Guidelines
S6.7.13	In order to monitor the disposal of public fill and C&D waste at public filling facilities and landfills, respectively, and to control fly tipping, a trip-ticket system shall be included as one of the contractual requirements and implemented by the Environmental Team undertaking the environmental monitoring and audit work. An Independent Environment Checker shall be responsible for auditing the results of the system.	Work site / During the construction period	Contractor and Independent Environmental Checker		V			ETWB TCW No. 31/2004
S6.7.14	Bentonite Slurry The disposal of residual used bentonite slurry shall follow the good practice guidelines stated in ProPECC PN 1/94 "Construction Site Drainage" and listed as follows: If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewers, storm drains or the receiving waters as set out in the Technical Memorandum of Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters. If the used bentonite slurry is intended to be disposed to public fill reception facilities, it will be mixed with dry soil on site before disposal.	Work site / During the construction period	Contractor		٨			ProPECC PN 1/94

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Table A13.5 Implementation Schedule for Land Contamination

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
2	23. To office the control of the con	Economy 11111111	Agent	Des	C	0	Dec	and Guidelines
Construction	on Phase							
For the Wh	ole Project							
S.12.6	The contaminated site shall be cleaned up before commencement of site clearance and construction work at the concerned area which may disturb the ground.	A King Marine / Before commencement of construction activities at A King Marine.	Project proponent for the re- provisioned Tin Hau Temple	V				"Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops" published by EPD, HKSAR EPD ProPECC Note No. 3/94
S7.10	During soil remediation works, the Contractor for the excavation works shall take note of the following points for excavation: • Excavation profiles must be properly designed and executed; • In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; • Quantities of soil to be excavated must be estimated; • It maybe necessary to split quantities of soil according to soil type, degree and nature of contamination. • Temporary storage of soil at intermediate depot or on-site	A King Marine / During soil remediation works	Contractor	1				Air Pollution Control Ordinance Noise Control Ordinance Waste Disposal Ordinance Waste Disposal (Chemical Waste) (General) Regulation

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	Relevant Legislation	
			Agent	Des	C	o	Dec	and Guidelines
	maybe required. The storage site shall include protection facilities for leaching into the ground. eg. Liner maybe required.							
	Supply of suitable clean backfill materials is needed after excavation. Care must be taken of existing buildings and utilities. Precautions must be taken to control of ground settlement Speed controls for vehicles shall be imposed on dusty site areas. Vehicle wheel and body washing facilities at the site's exit points shall be established and used. The following environmental mitigation measures shall be strictly followed during the operation and/or maintenance of the CS/S facilities:							Water Pollution Control Ordinance

Appendix 3.

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	ion	Relevant Legislation
EIA KCI	Environmental Proceedon Measures / Mitigation Measures	Location / Timing	Agent	Des	C	0	Dec	and Guidelines
	Air Quality Mitigation Measures The loading, unloading, handling, transfer or storage of cement shall be carried out in an enclosed system. The loading, unloading, handling, transfer or storage of other materials which may generate airborne dust emissions such as untreated soil and oversize materials sorted out from the screening plant and stabilized soil stockpiled in the designated handling area, shall be carried out in such a manner to prevent or minimise dust emissions. These materials shall be adequately wetted prior to and during the loading, unloading and handling operations. All practicable measures, including speed controls for vehicles, shall be taken to prevent or minimize the dust emission caused by vehicle movement. Tarpaulin or low permeable sheet shall be put on dusty vehicle loads transported between site locations.							
	Noise Mitigation Measures The mixing facilities shall be sited as far as practicable to the nearby noise sensitive receivers. Simultaneous operation of mixing facilities and other equipment shall be avoided. Mixing process and other associated material handling activities shall be properly scheduled to minimise potential cumulative noise impact on the nearby noise sensitive receivers. Construction Noise Permit shall be applied for the operation of powered mechanical equipment during restricted hours (if any).							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Ir	nplem Sta	entati ges*	on	Relevant Legislation and Guidelines
			Agent	Des	C	0	Dec	and Guidelines
	Water Quality Mitigation Measures Stockpile of untreated soil shall be covered as far as practicable to prevent the contaminated material from leaching out. The leachate shall be discharged following the requirements of WPCO. Waste Mitigation Measures Treated oversize materials will be used as filling material for backfilling within the site. Sorted materials of size smaller than 5 cm will be collected and transferred to the mixing plant for further decontamination treatment. Stabilized soils shall be broken into suitable size for backfilling or reuse on site. A high standard of housekeeping shall be maintained							
	within the mixing plant area. • If necessary, there shall be clear and separated areas for stockpiling of untreated and treated materials.							

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

Table A13.6 Implementation Schedule for Marine Ecology

EIA Ref	Environmental Protection Measures / Mitigation Measures	onmental Protection Measures / Mitigation Measures Location / Timing	Implementation	Implementation Stages*			on	Relevant Legislation
		g	Agent	Des	C	О	Dec	and Guidelines
Construction	on Phase							
For the Wh	ole Project - Schedule 3 DP							
S.9.7.2	Alternative design of the Trunk Road constructed in tunnel shall be adopted to avoid permanent reclamation in CBTS and ex-PWCA Basin.	-	CEDD/HyD	V				EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
For DP3 -	Reclamation Works							
S.9.7.3	Translocation of those potentially affected coral colonies to the nearby suitable habitats such as Junk Bay is recommended. A detailed translocation plan (including translocation methodology, monitoring of transplanted corals, etc.) should be drafted and approval by AFCD during the detailed design stage of the Project.	Ex-PCWA Basin and along seawall next to a public pier which is about 250 m away from the CBTS		1				EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	•	entati ges*	on	Relevant Legislation
	Zirin olimenta i Tottetton Manual to Manual to	Document, 1 mmng	Agent	Des	C	0	Dec	and Guidelines
S.9.7.4	During dredging and filling operations, a number of mitigation measures to control water quality shall be adopted to confine sediment plume within reclamation area and protect marine fauna in proximity to the reclamation. The mitigation measures include the following: • Installation of silt curtains during dredging activities • Use of tightly-closed grab dredger • Reduction of dredging rate • Control of grab descending speed • Construction of leading edges of seawall in the early stages of the reclamation works	Work site / during construction phase	Contractor		~			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
	Adoption of multiple-phase construction schedule							

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Ir		entati ges*	on	Relevant Legislation
		g	Agent	Des	C	О	Dec	and Guidelines
S.9.7.6	To minimize potential disturbance impacts on the foraging ardeid population in the CBTS, particularly in the area near the A King Shipyard, appropriate mitigation measures shall be adopted particularly during the construction phase. The following measures are recommended: Use of Quiet Mechanical Plant during the construction phase shall be adopted wherever possible. Adoption of multiple-phase construction schedule. General measures to reduce noise generated during the construction phase (see noise impact assessment) shall be	Work site / during construction phase	Contractor		V			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
S.9.7.7	effectively implemented. Seawalls shall be constructed in advance around the reclamation areas within the area of the CBTS to screen adjacent feeding ground from construction phase activities, reduce noise disturbance to the associated seabirds and also to restrict access to this habitat adjacent to works areas by ship traffic.	Work site / during construction phase	Contractor		√			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
S.9.7.8	Loss of artificial seawall habitats shall be reinstated by the construction of about 1 km vertical wave absorbing seawall along the coastlines of the new reclamation around the HKCEC and at North Point. The new seawalls are expected to provide large area of hard substrata for settlement and recruitment of intertidal fauna similar to those previously recorded from existing intertidal habitats.	Work site / during construction phase	Contractor		√			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.

^{*}Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table A13.7 Implementation Schedule for Landscape and Visual

EIA Ref	Envir	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Ir	nplem Sta	entati ges*	ion	Relevant Legislation and Guidelines
					Des	C	О	Dec	
Construction	Phase								
For the Whole	e Project								
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor	√	1			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	1	√			EIAO TM
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	V	√			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	V	√			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		√			EIAO TM
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		√			EIAO TM
For DP1 - CV	VB (With	in the Project Boundary)							
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	V	√			EIAO TM
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	V	1			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	V	1			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Envir	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In		entati ges*	ion	Relevant Legislation and Guidelines
					Des	C	О	Dec	
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		1			EIAO TM
For DP2 _ WD	II Maio	r Roads (Road P2)							
Table 10.5	CM1		Work site / During Construction Phase	Contractor	√	1			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM3		Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	1	V			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP3 - Rec	lamatio	n Works							
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		√			EIAO TM
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP5 - Wa	n Chai I	East Sewage Outfall	•			•		•	
Refer to EIA- 058/2001 Table 10.13	CM2	Minimisation of works areas.	Work site / During Construction Phase	Contractor		1			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM3	Erection of decorative hoardings.	Work site / During Construction Phase	Contractor		V			EIAO TM

Monthly EM&A Report

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Envir	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In		entati ges*	on	Relevant Legislation and Guidelines
					Des	C	О	Dec	
Refer to EIA- 058/2001 Table 10.13	CM4	Control night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM5	Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		√			EIAO TM
	ss-Harb	our Water Mains from Wan Chai to Tsim Sha Tsui							
Refer to EIA- 058/2001 Table 10.13		Minimisation of works areas.	Work site / During Construction Phase	Contractor		1			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM3	Erection of decorative hoardings.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM4	Control night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM5	Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		V			EIAO TM
Operation Pha	se					-			
For the Whole	Project	- Schedule 3 DP							
Table 10.6, Figure 10.5.1- 10.5.5	OM1	Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	CEDD/HyD	1	1	1		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM2	Shrub and Climbing Plants to soften proposed structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD	1	1	1		ETWB TCW 2/2004

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Enviro	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In	nplem	entati ges*	ion	Relevant Legislation and Guidelines
				Agent	Des	C	0	Dec	and Guidennes
Table 10.6, Figure 10.5.1- 10.5.5	OM3	Buffer Tree and Shrub Planting to screen proposed roads and associated structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD/	1	1	1		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM4	Aesthetic design of proposed waterfront promenade.	Work site / During Design Stage and Operation Phases	CEDD ⁴	V	√	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM5	Aesthetic streetscape design.	Work site / During Design Stage and Operation Phases	CEDD/HyD	1	1	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM6	Aesthetic design of roadside amenity areas.	Work site / During Design Stage and Operation Phases	CEDD/HyD	1	1	1		ETWB TCW 2/2004
For DP1 - CW	B (Withi	in the Project Boundary)							
Table 10.6,	OM1	Aesthetic design of buildings and road-related structures,	Work site / During	HyD	√	√	√		ETWB TCW 2/2004
Figure 10.5.1- 10.5.5		including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Design Stage and Operation Phases						
Table 10.6, Figure 10.5.1- 10.5.5	OM2	Shrub and Climbing Plants to soften proposed structures	Work site / During Design Stage and Operation Phases	HyD	V	1	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM3	Buffer Tree and Shrub Planting to screen proposed roads and associated structures.	Work site / During Design Stage and Operation Phases	HyD	1	1	1		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM5	Aesthetic streetscape design.	Work site / During Design Stage and Operation Phases	HyD	1	1	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM6	Aesthetic design of roadside amenity areas. *Roads (Road P2)	Work site / During Design Stage and Operation Phases	HyD	V	V	V		ETWB TCW 2/2004

⁴ CEDD will identify an implementation agent

Monthly EM&A Report

EIA Ref	Envir	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In	nplem Sta	entati ges*	on	Relevant Legislation and Guidelines
				_	Des	C	0	Dec	
Table 10.6, Figure 10.5.1- 10.5.5	OM1	Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM3	Buffer Tree and Shrub Planting to screen proposed roads and associated structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD		1	1		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM5	Aesthetic streetscape design.	Work site / During Design Stage and Operation Phases	CEDD/HyD		√	√		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM6	Aesthetic design of roadside amenity areas	Work site / During Design Stage and Operation Phases	CEDD/HyD		1	1		ETWB TCW 2/2004
For DP3 - Rec	lamatio	n Works							
Table 10.6, Figure 10.5.1- 10.5.5	OM4	Aesthetic design of proposed waterfront promenade.	Work site / During Design Stage and Operation Phases	CEDD ⁵	√	√	√		ETWB TCW 2/2004

^{*}Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

 $^{^{\}rm 5}$ CEDD will identify an implementation agent

Appendix 4.1

Action and Limit Level

Lam Geotechnics Limited

Action and Limit Level

Action and Limit Level for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received.	75 dB(A) ^{Note 1}

Note 1:

- 70dB(A) and 65 dB(A) for schools during normal teaching periods and school examination periods, respectively.
- If works are to be carried out during the restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

Action and Limit Level for Air Monitoring

Monitoring Location	1-hour TSP Leve	l in μ g/m 3	24-hour TSP Le	evel in μ g/m 3
	Action Level	Limit Level	Action Level	Limit Level
CMA1b Note 2	320.1	500	176.7	260
CMA2a	323.4	500	169.5	260
CMA3a Note 2	311.3	500	171.0	260
CMA4a	312.5	500	171.2	260
CMA5a Note 2	332.0	500	181.0	260
CMA6a Note 2	300.1	500	187.3	260

Note 2:

- As per facing owner's rejection in allowing the implementation of long-term air quality impact monitoring at their premises, alternative monitoring stations and justification were proposed for IEC verification and EPD approval.
- The established Action and Limit Levels from the baseline air monitoring will be adopted to the alternative monitoring stations

Action and Limit Level for Water Monitoring

Parameters	Dry S	eason	Wet Season				
r ai ailletei s	Action	Limit	Action	Limit			
WSD Salt Water Intake							
SS in mg L ⁻¹	13.00	14.43	16.26	19.74			
Turbidity in NTU	8.04	9.49	10.01	11.54			
DO in mg/L	3.66	3.28	3.17	2.63			
Cooling Water Inta	Cooling Water Intake						
SS in mg L ⁻¹	15.00	22.13	18.42	27.54			
Turbidity in NTU	9.10	10.25	11.35	12.71			
DO in mg/L	3.36	2.73	3.02	2.44			

Remarks:

 Action and Limit Level for the wet season are applied after the EPD approval of Updated EM&A Manual on 29 April 2011.

Action and Limit Levels for Odour Patrol

Parameters	Action	Limit
Odour Nuisance (from odour intensity analysis or odour patrol)	 When two documented complaint are received; or Odour Intensity of 2 is measured from odour intensity analysis. 	 Five or more consecutive genuine documented complaints within a week; or Odour Intensity of 3 or above is measured from odour intensity analysis.

Appendix 4.2

Copies of Calibration Certificates

PILOT TESTING LIMTIED

Page 1 / 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Information supplied by customer:

CONTACT: <u>DEREK LO</u>

WORK ORDER: HK1310015

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>09/09/2013</u>
DATE OF ISSUE: <u>13/09/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: —

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203008	
Equipment No.:		
Date of Calibration:	13 September, 2013	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

Director

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

Address: Room 1503, 15/F, Wayson Commercial House, 68-70 Lockhart Road, Wanchai, Hong Kong Phone +852 2527 6691 | Email info@pilot-testing.com

WORK ORDER: HK1310015

DATE OF ISSUE: 13th September, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter		
Brand Name:	Xin Rui		
Model No.:	WGZ-3B		
Serial No.:	1203008		
Equipment No.:			
Date of Calibration:	13 September, 2013		
Date of next Calibration:	13 December, 2013		

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.00	0
4	3.85	-3.8
10	10.2	+2.0
40	39.1	-2.2
100	95.0	-5.0
400	420	+5.0
1000	980	-2.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Mr. Peter Lee

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

Information supplied by customer:

CONTACT: <u>DEREK LO</u> WORK ORDER: <u>HK1310044</u>

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>03/12/2013</u> DATE OF ISSUE: <u>10/12/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity		
Equipment Type:	Turbidimeter		
Brand Name:	Xin Rui		
Model No.:	WGZ-3B		
Serial No.:	1203008		
Equipment No.:			
Date of Calibration:	10 December, 2013		

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

WORK ORDER: HK1310044

DATE OF ISSUE: 10th December, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203008	
Equipment No.:		
Date of Calibration:	10 December, 2013	
Date of next Calibration:	10 March, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	3.68	-8.0
10	10.3	+3.0
40	38.2	-4.5
100	94.0	-6.0
400	416	+4.0
1000	970	-3.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Information supplied by customer:

CONTACT: KATHIE HO WORK ORDER: HK1310025

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>04/11/2013</u> DATE OF ISSUE: <u>05/11/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203016
Equipment No.:	
Date of Calibration:	5 November, 2013

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

WORK ORDER: <u>HK1310025</u>

DATE OF ISSUE: 5th November 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203016
Equipment No.:	
Date of Calibration:	5 November, 2013
Date of next Calibration:	5 February, 2014

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	+0.2
4	4.27	+6.8
10	10.3	+3.0
40	42.4	+5.2
100	105	+5.0
400	417	+4.2
1000	970	-3.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Mr. Peter Leé

PILOT TESTING LIMTIED

Page 1 / 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

<u>Information supplied by customer:</u>

CONTACT: KATHIE HO

WORK ORDER: HK1310026

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>04/11/2013</u>
DATE OF ISSUE: <u>05/11/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203025
Equipment No.:	
Date of Calibration:	5 November, 2013

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

Tunan

WORK ORDER: HK1310026

DATE OF ISSUE: 5th November, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203025	
Equipment No.:		
Date of Calibration:	5 November, 2013	
Date of next Calibration:	5 February, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	4.20	+5.0
10	10.4	+4.0
40	42.0	+5.0
100	102	+2.0
400	400	0
1000	980	+2.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Mr. Peter Lee

PILOT TESTING LIMTIED

Page 1 / 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Information supplied by customer:

CONTACT: KATHIE HO WORK ORDER: HK1310039

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>21/11/2013</u>
DATE OF ISSUE: 28/11/2013

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203010
Equipment No.:	
Date of Calibration:	28 November, 2013

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

PILOT TESTING LIMTIED

Page 2 / 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

WORK ORDER: HK1310039

DATE OF ISSUE: 28th November, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203010	
Equipment No.:		
Date of Calibration:	28 November, 2013	
Date of next Calibration:	28 February, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	4.23	+5.8
10	10.2	+2.0
40	38.6	-3.5
100	106	+6.0
400	420	+5.0
1000	983	-1.7
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1327829

LABORATORY:

HONG KONG

DATE RECEIVED:

09/10/2013

DATE OF ISSUE:

17/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter

Brand Name: Model No.:

YSI

Professional plus

Serial No.:

11F100597

Equipment No.:

Date of Calibration: 15 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Ptv Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee General Manager

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order: Date of Issue: HK1327829 17/10/2013

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus 11F100597

Serial No.:

--

Equipment No.: Date of Calibration:

15 October, 2013

Date of next Calibration:

15 January, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	1.00	0.04
1.85	1.89	0.04
5.22	5.37	0.15
7.95	7.96	0.01
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Method Reli / II II/ (215t cartic	311,, 13001112	
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	0.01
7.0	6.98	-0.02
10.0	10.02	0.02
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Method Rel. Al IIA (213t cartie	711), 23205	
Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.02	
10	9.61	-3.9
20	19.65	-1.8
30	29.86	-0.5
	Tolerance Limit (± ppt)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	11.5	0.5
25.0	23.8	-1.2
38.0	37.1	-0.9
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager -

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1326638

LABORATORY:

HONG KONG

DATE RECEIVED:

27/09/2013

DATE OF ISSUE:

07/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

11F100420

Equipment No.:

Date of Calibration: 07 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee. General Manager -

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order: Date of Issue: HK1326638

Client:

07/10/2013 LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

11F100420

Equipment No.: Date of Calibration:

07 October, 2013

Date of next Calibration:

07 January, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
		0.01
2.32	2.33	0.01
4.36	4.32	-0.04
6.30	6.29	-0.01
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

	,,	
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.17	0.17
7.0	7.19	0.19
10.0	9.96	-0.04
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

meenod ren / ii ii/ (225t edition); 25255		
Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.03	
10	9.94	-0.6
20	19.49	-2.6
30	29.55	-1.5
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0 24.0 41.0	9.8 23.1 40.4	-0.2 -0.9 -0.6
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1323779

LABORATORY:

HONG KONG

DATE RECEIVED:

02/09/2013

DATE OF ISSUE:

17/09/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus 13A100242

Serial No.:

Equipment No.:

Date of Calibration: 07 September, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee, Richard

General Manager -

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong | PHONE +852 2610 1044 | FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD An ALS Limited Company

Work Order: Date of Issue: HK1323779 17/09/2013

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

13A100242

Equipment No.:

Date of Calibration:

07 September, 2013

Date of next Calibration:

07 December, 2013

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.04	0.04
7.0	7.14	0.14
10.0	10.14	0.14
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

meeriou neri / ii iv (2250 cuition), 25255		
Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.22	2.2
20	20.80	4.0
30	30.55	1.8
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.5	10.1	0.6
24.0	23.0	-1.0
38.0	37.1	-0.9
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

Page 2 of 3

Work Order:

HK1323779

Date of Issue:

17/09/2013

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

13A100242

Equipment No.:

--

Date of Calibration:

07 September, 2013

Date of next Calibration:

07 December, 2013

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

1st time

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
5.26 6.20 8.28	4.54 5.90 8.01	-0.72 -0.30 -0.27
	Tolerance Limit (±mg/L)	0.20

Method Ref: APHA (21st edition), 45000: G

2nd time

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
4.45 6.62 8.31	3.43 6.39 8.45	-1.02 -0.23 0.14
	Tolerance Limit (±mg/L)	0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

PP

Mr. Fung Lim Chee, Richard General Manager -

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1327060

LABORATORY:

HONG KONG

DATE RECEIVED:

03/10/2013

DATE OF ISSUE:

08/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

13A100242

Equipment No.:

Date of Calibration: 08 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee, Richard General Manager:

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order: Date of Issue:

HK1327060 08/10/2013

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

13A100242

Equipment No.:

--

Date of Calibration:

08 October, 2013

Date of next Calibration:

08 January, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	_ 5	
7.85	7.68	-0.17
5.82	5.67	-0.15
3.24	3.18	-0.06
	Tolerance Limit (±mg/L)	0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager

Greater China & Hong Kong

ALS Technichem (HK) Ptv Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD.

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1334576

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE:

12/12/2013 17/12/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.: Serial No.:

Professional plus 13A100242

Equipment No.:

Date of Calibration: 16 December, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

> Mr. Fung Lim Chee/Richard General Manager

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1334576 17/12/2013

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

13A100242

Equipment No.:

--

Date of Calibration:

16 December, 2013

Date of next Calibration:

16 March, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)			
1.03	2.07	0.14			
1.93	2.07	0.14			
4.72 8.61	4.83 8.74	0.11 0.13			
0.01	6.74	0.13			
	Tolerance Limit (±mg/L)	0.20			

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.05	0.05
7.0	6.94	-0.06
10.0	9.92	-0.08
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

	,,						
Expected Reading (ppt)	cted Reading (ppt) Displayed Reading (ppt)						
0	0.00						
10	9.99	-0.1					
20	20.35	1.8					
30	30.73	2.4					
	Tolerance Limit (±%)	10.0					

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.7	0.7
18.5	18.2	-0.3
38.0	37.6	-0.4
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager

Greater China & Hong Kong

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ju Operator		Rootsmeter Orifice I.I	,	438320 0005	Ta (K) - Pa (mm) -	759.46
					METER	ORFICE
PLATE	VOLUME	VOLUME	DIFF	DIFF	DIFF	DIFF
OR	START	STOP	VOLUME	TIME	Hg	H2O
Run #	(m3)	(m3)	(m3)	(min)	(mm)	(in.)
1	NA	NA	1.00	1.3910	.3.2	2.00
2	NA	NA	1.00	0.9830	6.4	4.00
3	NA	NA	1.00	0.8800	7.9	5.00
4	NA	NA	1.00	0.8380	8.8	5.50
5	NA	NA	1.00	0.6930	12.7	8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9884 0.9843 0.9822 0.9811 0.9760	0.7106 1.0013 1.1161 1.1708 1.4084	1.4090 1.9926 2.2278 2.3365 2.8180		0.9958 0.9916 0.9895 0.9884 0.9832	0.7159 1.0087 1.1244 1.1795 1.4188	0.8888 1.2570 1.4054 1.4740 1.7777
Qstd slop intercept coefficie	(b) = ent (r) =	2.01968 -0.02746 0.99999		Qa slope intercept coefficie	t (b) = ent (r) =	1.26469 -0.01732 0.99999
y axıs =	SQRT [H20 (1	?a/760)(298/5	ra)]	y axis =	SQRT[H2O(7	ra/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Location

: CMA1b

Calibration Data for High Volume Sampler (TSP Sampler)

Calbration Date

19-Nov-13

Equipment no.		EL452				Calbra	ation Due Dat	: : <u> </u>	19-Jan-14	
CALIBRATION OF CON	TINUOUS	FLOW RE	CORDER							
			A	mbient Co	ndition					
Temperature, T _a		294		Kelvin	Pressure, P	a		1021	l mmHg	
			Orifice Tra	nsfer Stand	lard Informa	ation				
Equipment No.		EL086		Slope, m _c	2.019	68	Intercept, b	С	-0.02746	
Last Calibration Date		15-Jul-1	3		(HxI	P _a / 10	13.3 x 298	/ T ,	a) ^{1/2}	
Next Calibration Date	294						$Q_{std} + b_c$			
			C	alibration	of RSP					
Calibration	Mar			Q	std	Contin	uous Flow		IC	
Point	H (i	inches of	water)	(m ³ /	min.)	Rec	order, W	(W(P	² _a /1013.3x298/T _a) ^{1/2} /35.3	1)
	(up)	(down)	(difference)	X-a	nxis	(CFM)		Y-axis	
1	6.1	6.1	12.2	1.7	613		62		62.6571	
2	5.1	5.1	10.2	1.7613 1.6117 1.4289		53		53.5617		
3	4.0	4.0	8.0	1.4	289		43		43.4557	
4	2.5	2.5	5.0	1.1	325		28	28.2967		
5	1.4	1.4	2.8	0.8	509		14		14.1484	
By Linear Regression of	Y on X									
	Slope, m	=	52.9	089	Int	ercept, b	= -3	31.37	58	
Correlation C	oefficient*	=	0.99	94						
Calibration	Accepted	=	Yes/	\0 **						
										_
* if Correlation Coefficien	t < 0.990,	check and	recalibration	again.						
** Delete as appropriate.										
Remarks :										
									<u> </u>	
Calibrated by		-					ed by	: -	Derek Lo	
Date :	1	9-INOV-13				Date		: -	19-Nov-13	

CMA2a

EL449

Location

Equipment no.

Calibration Data for High Volume Sampler (TSP Sampler)

Calbration Date

Calbration Due Dat :

19-Nov-13

19-Jan-14

			Δ	mbient Cond	lition				
Temperature, T _a		294		Kelvin Pr	essure, P	a		1021	mmHg
			Orifice Tra	nsfer Standa	rd Informa	ation			
Equipment No.		EL086		Slope, m _c	2.0196	68 I	ntercept, b	ос	-0.02746
Last Calibration Date		15-Jul-1	3		(Hxl	P _a / 1013	2.3 x 298	$3/T_a$	1/2
Next Calibration Date		15-Jul-1	1		=	$m_c \times C$	$Q_{std} + b_{std}$	c	
			C	alibration of	RSP				
Calibration	Mar	nometer R	eading	Q _{st}	d	Continuo	us Flow		IC
Point	Н (inches of	water)	(m ³ / m	nin.)	n.) Recorder, W			1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-ax	is	(CFM)			Y-axis
1	6.1	6.1	12.2	1.76	1.7613 60			60.6359	
2	5.0	5.0	10.0	1.595	59	5	1		51.5405
3	4.1	4.1	8.2	1.446	35	43	3	43.4557	
4	2.5	2.5	5.0	1.132	1.1325 27		,		27.2861
5	1.4	1.4	2.8	0.850)9	14	1		14.1484
By Linear Regression of	Y on X								
	Slope, m	=	51.1	083	Inte	ercept, b =		29.9618	B
Correlation Co	oefficient*	=	0.99	995					
Calibration	Accepted	=	Yes/	Vo **					
* if Correlation Coefficien	t < 0.990	check and	recalibration	again					
				3.					
** Delete as appropriate.									
Remarks :									
Calibrated by		Sam				Checked	by	:	Derek Lo
	1	9-Nov-13				Date		:	19-Nov-13

CMA4a

EL390

Location

Equipment no.

Calibration Data for High Volume Sampler (TSP Sampler)

Calbration Date

Calbration Due Dat :

19-Nov-13

19-Jan-14

OALUDDATION OF CON	TINUI () ()	FI OW DE							
CALIBRATION OF CON	TINUUUS	FLOW RE		mbient Co	ndition				
Temperature, T _a		294		T	Pressure, P	ı		102	1 mmHg
			Orifice Tra	nsfer Stand	dard Informa	ation			
Equipment No.		EL086	Office Tra	Slope, m _c	2.0196		Intercept, k	ос	-0.02746
Last Calibration Date		15-Jul-13	3		(HxI	P _a / 10)13.3 x 298		a) ^{1/2}
Next Calibration Date		15-Jul-14	ļ		, =		$x Q_{std} + b_{o}$		u,
			C	Calibration	of RSP				
Calibration	Mar	nometer Re	eading	Q	std	Conti	nuous Flow		IC
Point	H (i	inches of v	vater)	(m ³ /	min.)	Red	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-a	axis		(CFM)		Y-axis
1	6.1	6.1	12.2	1.7	613		62		62.6571
2	5.1	5.1	10.2	1.6	117		52		52.5511
3	4.0	4.0	8.0	1.4	289		42		42.4451
4	2.5	2.5	5.0	1.1	325		26		26.2755
5	1.5	1.5	3.0	0.0	803		13		13.1378
By Linear Regression of	Y on X								
	Slope, m	=	55.6	501	Inte	ercept, b	=	36.43	335
Correlation Co	oefficient*	=	0.99	992					
Calibration	Accepted	=	Yes/ł	No**					
if Correlation Coefficien * Delete as appropriate. Remarks :	t < 0.990,	check and	recalibratior	again.					
Calibrated by		Henry				Chec	ked by	:	Derek Lo
Date :	1:	9-Nov-13				Date		: _	19-Nov-13

Location

CMA5a

Calibration Data for High Volume Sampler (TSP Sampler)

Calbration Date

19-Nov-13

Equipment no.		EL380	n Due Dat	: 19-Jan-14							
CALIBRATION OF CON	TINUOUS	FLOW RE	CORDER								
			A	mbient Condition							
Temperature, T _a		294		Kelvin Pressure, P	a	,	1021 mmHg				
			Orifice Tra	nsfer Standard Informa	ation						
Equipment No.		EL086		Slope, m _c 2.019	68 Ir	ntercept, bc	-0.02746				
Last Calibration Date		15-Jul-13	3	(Hx	P _a / 1013.	.3 x 298 /	(T _a) 1/2				
Next Calibration Date		15-Jul-1	1	$= m_c \times Q_{std} + b_c$							
			С	alibration of RSP							
Calibration	Mar	nometer R	eading	Q _{std}	Continuo	us Flow	IC				
Point	Н (inches of	water)	(m ³ / min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31				
	(up)	(down)	(difference)	X-axis	(CFI	M)	Y-axis				
1	6.2	6.2	12.4	1.7756	61		61.6465				
2	5.1	5.1	10.2	1.6117	52	2	52.5511				
3	4.1	4.1	8.2	1.4465	44		44.4663				
4	2.4	2.4	4.8	1.1099	28		28.2967				
5	1.5	1.5	3.0	0.8803	18	3	18.1908				
By Linear Regression of	Y on X										
	Slope, m	=	48.3	214 Int	tercept, b =	-24	4.9174				
Correlation C	oefficient*	=	0.99	994							
Calibration	Accepted	=	Yes/ I	\0 **							
* if Correlation Coefficien	t < 0.990,	check and	recalibration	again.							
** Delete as appropriate.											
Delete as appropriate.											
Remarks :											
Calibrated by		Henry			Checked	by	: Derek Lo				
Date :	1	9-Nov-13			Date		: 19-Nov-13				

CMA6a

EL448

Location

Equipment no.

Calibration Data for High Volume Sampler (TSP Sampler)

Calbration Date

Calbration Due Dat :

19-Nov-13

19-Jan-14

CALIBRATION OF CON	TINUOUS	ELOW DE	CORDER						
SALIBICATION OF CON	11110000	T LOW ILL		mbient Co	ndition				
Femperature, T _a		294		I	Pressure, P	<u> </u>		102	21 mmHg
			Orifice Tra	nsfer Stand	dard Informa	ation			
Equipment No.		EL086		Slope, m _c	2.0196		Intercept, b	С	-0.02746
Last Calibration Date		15-Jul-13	3	Į.	(Hxl	P _a / 10)13.3 x 298	3 / T	· a) 1/2
Next Calibration Date		15-Jul-14	ļ		=		$x Q_{std} + b_{o}$		
			C	alibration	of RSP				
Calibration	Mar	nometer Re	ading	Q	std	Conti	nuous Flow		IC
Point	H (i	inches of v	vater)	(m ³ /	' min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-:	axis		(CFM)		Y-axis
1	6.1	6.1	12.2	1.7	'613		60		60.6359
2	5.0	5.0	10.0	1.5	959		51		51.5405
3	4.0	4.0	8.0	1.5959 1.4289		43			43.4557
4	2.4	2.4	4.8	1.1	099		28		28.2967
5	1.5	1.5	3.0	0.0	3803		17		17.1802
By Linear Regression of	Y on X Slope, m	=	48.8	703	Inte	ercept, b	= -	26.0	098
Correlation C	oefficient*	=	0.99	997					
Calibration	Accepted	=	Yes/	\\0 **					
if Correlation Coefficien	t < 0.990,	check and	recalibratior	ı again.					
* Delete as appropriate.									
Remarks :									
Calibrated by		Henry				Chec	ked by	: _	Derek Lo
): Date	1:	9-Nov-13				Date		: _	19-Nov-13

Appendix 5.1

Monitoring Schedules for Reporting Month and Coming Reporting Month

Contract No. HK/2011/07 Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage 2)

Environmental Monitoring Schedule December 2013

Senday Monday Tuesday Wednesday Thursday Firsky Saturday 30 Nov 20 Nov 20 Nov 20 Nov 30							nber 2						
Impact WOM Mid-ede 10.04 Mid-lood 10.05 Mid-lood 10	Sunday	Monday		Tuesday		Wednesday		Thursday		Friday		Saturday	
Mode abo Mode Mod	24-No	v							28-Nov		29-Nov		30-Nov
Mid-abb 100 Mid-flood 14.38													
Mode abo Mode Mod													
Mode abo Mode Mod													
Mode abo Mode Mod													
Mode abo Mode Mod													
Mode abo Mode Mod													
Mid-ebb													
Mode abo Mode Mod													
Mode Record 14-38													
1-Dec 2-Dec 3-Oec 3-Oec 4-Dec 5-Dec 6-Dec 7-Dec													
24hr TSP Noise (Daytime) (M1a) Wish fishod Noise (Daytime) (M1a) Wish fishod Noise (Daytime) (M1b) Noise (Daytime) (M1b) Noise (Daytime) (M1b) Noise (Daytime) Noise (Daytime) Noise (Daytime)								Mid-flood				Mid-flood	
Noise (Daytime) (M1a) Mid-debd 17:08 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-flood 11:00 Mid-debd 12:00 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 12:00 Mid-flood 12:00 Mid-flood 13:00 Mid-flood 17:00 Mid-flood 18:00 Mid-	1-De	c	2-Dec		3-Dec		4-Dec		5-Dec		6-Dec		7-Dec
Noise (Daytime) (M1a) Mid-debd 17:08 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-flood 11:00 Mid-debd 12:00 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 12:00 Mid-flood 12:00 Mid-flood 13:00 Mid-flood 17:00 Mid-flood 18:00 Mid-													
Noise (Daytime) (M1a) Mid-debd 17:08 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-flood 11:00 Mid-debd 12:00 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 12:00 Mid-flood 12:00 Mid-flood 13:00 Mid-flood 17:00 Mid-flood 18:00 Mid-													
Noise (Daytime) (M1a) Mid-debd 17:08 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-flood 11:00 Mid-debd 12:00 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 12:00 Mid-flood 12:00 Mid-flood 13:00 Mid-flood 17:00 Mid-flood 18:00 Mid-													
Noise (Daytime) (M1a) Mid-debd 17:08 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 23:52 Mid-flood 18:35 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-debd 13:00 Mid-flood 11:00 Mid-debd 12:00 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 13:54 Mid-debd 22:20 Mid-flood 12:00 Mid-flood 12:00 Mid-flood 13:00 Mid-flood 17:00 Mid-flood 18:00 Mid-		24hr TSP										24hr TSP	
Noise (Daytime)		2		1hr TSD								2 101	
Mage		Naise (Daytims)		IIII I OF		Noise (Doutime)							
Impact WOM Mid-abb 13-17 Mid-abb 3-30 Mid-abc 13-17 Mid-abc 3-30 Mid-ab													
Mid-ebb 13:17 8-Dec 9-Dec 10-Dec 11-Dec 11-Dec 12-Dec 13-Dec 11-Dec 11-													
Mid-ebb 23.52 Mid-flood 18.35 Mid-flood 10.17		133											
8-Dec 9-Dec 10-Dec 11-Dec 11-Dec 12-Dec 13-Dec 14-Dec 15-Dec 15-Dec 15-Dec 16-Dec 17-Dec 16-Dec 17-Dec 16-Dec 17-Dec 16-Dec 17-Dec 14-Dec 14-D		131											
Thr TSP		Mid-ebb				Mid-flood						Mid-flood	
Thr TSP	8-De	c	9-Dec		10-Dec		11-Dec		12-Dec		13-Dec		14-Dec
Thr TSP													
Thr TSP													
Thr TSP													
Thr TSP										24hr TSP			
Impact WQM		1hr TCD								24111 101		the TCD	
Impact WQM		IIII ISP		Naire (Deviler)								IIII 13P	
Mid-ebb 4.48 Mid-flood 13:54 Mid-flood 15:24 Mid-ebb 20:34 Mid-ebb 22:20 15-Dec 16-Dec 17-Dec 18-Dec 19-Dec 20-Dec 21-Dec 21-De				Noise (Daytime)									
Mid-ebb 4.48 Mid-flood 13:54 Mid-flood 15:24 Mid-ebb 20:34 Mid-ebb 22:20 15-Dec 16-Dec 17-Dec 18-Dec 19-Dec 20-Dec 21-Dec 21-De													
Mid-flood 12:06 Mid-ebb 20:34 Mid-ebb 22:20		333											
15-Dec 16-Dec 17-Dec 18-Dec 19-Dec 20-Dec 21-Dec 21		Mid-ebb				Mid-flood				Mid-flood	15:24		
Noise (Daytime)		Mid-flood	12:06			Mid-ebb	20:34			Mid-ebb	22:20		
Noise (Daytime)	15-De	c	16-Dec		17-Dec		18-Dec		19-Dec		20-Dec		21-Dec
Noise (Daytime)													
Noise (Daytime)													
Noise (Daytime)													
Noise (Daytime)								24hr TSD					
Noise (Daytime)								24111 131		the TCD			
Impact WQM										IIII ISP			
Impact WQM													
Mid-flood 17:09 Mid-ebb 0:10 Mid-flood 18:08 Mid-ebb 1:14 Mid-ebb 2:04 Mid-flood 9:19 22-Dec 23-Dec 24-Dec 25-Dec 26-Dec 27-Dec 27-Dec 24hr TSP (CMA2a) 1hr TSP Noise (Daytime) Impact WQM Mid-ebb 3:29 Mid-ebb 4:54													
Mid-flood 17:09 Mid-ebb 0:10 Mid-flood 18:08 Mid-ebb 1:14 Mid-flood 9:19 22-Dec 23-Dec 24-Dec 25-Dec 26-Dec 27-Dec 24hr TSP 24hr TSP (CMA2a) 1hr TSP 1hr TSP Mid-ebb Impact WQM Mid-ebb Impact WQM Mid-ebb 4:54		Impact WQM		Impact WQM		Impact WQM		Impact WQM					
22-Dec 23-Dec 24-Dec 25-Dec 26-Dec 27-Dec 24hr TSP 24hr TSP (CMA2a) 1hr TSP 1hr TSP Impact WQM Impact WQM Impact WQM Mid-ebb 3:29 Mid-ebb 4:54													
24hr TSP		Mid-flood	17:09	Mid-ebb	0:10	Mid-flood	18:08	Mid-ebb	1:14			Mid-flood	9:19
1hr TSP	22-De	c	23-Dec		24-Dec		25-Dec		26-Dec		27-Dec		
1hr TSP													
1hr TSP													
1hr TSP													
1hr TSP		24hr TSD		24br TSD (CMA2a)									
Noise (Daytime) Impact WQM Impact WQM Mid-ebb 3:29 Mid-ebb 4:54		4111 101											
Impact WQM Mid-ebb 3:29 Mid-ebb 4:54		L		INF ISP									
Mid-ebb 3:29 Mid-ebb 4:54		Noise (Daytime)											
Mid-ebb 3:29 Mid-ebb 4:54													
Mid-flood 11:22 Mid-flood 12:50													
				Mid-flood	11:22			Mid-flood	12:50				

Contract No. HK/2011/07

Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage 2)

Tentative Environmental Monitoring Schedule January 2014

Sunda	ıy	Monday		Tuesday		Wednesday	,	Thursday		Friday		Saturo	lay
	22-Dec		23-Dec		24-Dec		25-Dec		26-Dec		27-Dec		28-Dec
		24hr TSP		AL- TOD								24hr TSP	
		Noise (Daytime)		1hr TSP									
		Noise (Daytime)		Noise (Daytime)									
				Impact WQM				Impact WQM				Impact WQM	
				Mid-ebb	3:29			Mid-ebb	4:54			Mid-flood	14:20
				Mid-flood	11:22			Mid-flood	12:50			Mid-ebb	21:22
	29-Dec		30-Dec		31-Dec		1-Jan		2-Jan		3-Jan		4-Jan
		1hr TSP								24hr TSP		1hr TSP	
		Noise (Daytime)		Noise (Daytime)									
								Impact WQM	40.07			Impact WQM Mid-flood	0.05
								Mid-ebb Mid-flood	13:07 18:25			Mid-tiood Mid-ebb	9:05 14:44
	5-Jan		6-Jan		7-Jan		8-Jan	IVIIU-IIUUU	9-Jan		10-Jan	wiiu-EDD	14:44 11-Jan
	o oui.												
												1	
		VC 24hr TSP		VC 1hr TSP									
								24hr TSP		1hr TSP			
				Noise (Daytime)		Noise (Daytime)							
		Impact WQM				Impact WQM				Impact WQM			
		Mid-flood Mid-ebb	10:34			Mid-flood	12:07			Mid-flood Mid-ebb	13:42		
	12-Jan	MIG-EDD	16:26 13-Jan		14-Jan	Mid-ebb	18:41 15-Jan		16-Jan	MIG-EDD	21:18 17-Jan		18-Jan
	12-3411		15-Jail		14-5411		10-Jail		10-Jaii		17-Jai		10-Jaii
		VC 24hr TSP		VC 1hr TSP									
						24hr TSP		1hr TSP					
		Noise (Daytime)		Noise (Daytime)									
		Impact WQM				Impact WQM		Impact WQM				Impact WQM	
		Mid-flood	16:02			Maid Seed	47.00	Mid abb	0.00			Mid-ebb	1:27
	19-Jan	Mid-ebb	23:24 20-Jan		21-Jan	Mid-flood	17:20 22-Jan	Mid-ebb	0:28 23-Jan		24-Jan	Mid-flood	8:12 25-Jan
	ıs-Jan		zu-Jan		2 1-Jan	Ί	ZZ-Jän		zo-Jan		z4-Jan	1	∠o-Jan
						ĺ						I	
		VC 24hr TSP		VC 1hr TSP		ĺ						I	
		24hr TSP		1hr TSP		ĺ				24hr TSP		1hr TSP	
		Noise (Daytime)						Noise (Daytime)					
						ĺ						I	
												1	
		Impact WQM				Impact WQM				Impact WQM		I	
		Mid-flood	9:08			Mid-flood	10:21			Mid-flood	11:47		
		Mid-ebb	14:47 27-Jan			Mid-ebb	16:18			Mid-ebb	18:28	-	
	20 1-		∠ı-Jan	1		1						I	
	26-Jan												
	26-Jan												
		VC 24hr TSP											
		VC 24hr TSP											
		VC 24hr TSP Noise (Daytime)											
		Noise (Daytime)											
		Noise (Daytime) Impact WQM											
		Noise (Daytime)	14:28 21:51										

Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

Location: M1a - Harbour Road Sports Centre

			Measure	ement Nois	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq L10 L90		L90	Leq	Leq	Leq
			710 715 750		Unit: dE	3(A), (30-min)		
2/12/2013	11:30	Fine	71.6 74.5 65.0		72	72	75	
10/12/2013	14:00	Fine	71.9 74.5 67.0		72	72	75	
19/12/2013	10:45	Fine	72.5 75.0 67.0		72	61	75	
23/12/2013	9:23	Fine	73.1 76.0 68.0		72	66	75	

Location: M2b - Noon-day gun area

			Measure	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq L10 L90		Leq	Leq	Leq	
						Unit: di	3(A), (30-min)	
4/12/2013	9:32	Fine	70.0	72.0	67.0	68	66	75
10/12/2013	16:40	Fine	69.7	71.5	66.5	68	66	75
18/12/2013	8:40	Fine	67.9	71.3	61.4	68	56	75
23/12/2013	10:07	Fine	74.2	76.5	69.0	68	73	75

Location: M3a - Tung Lo Wan Fire Station

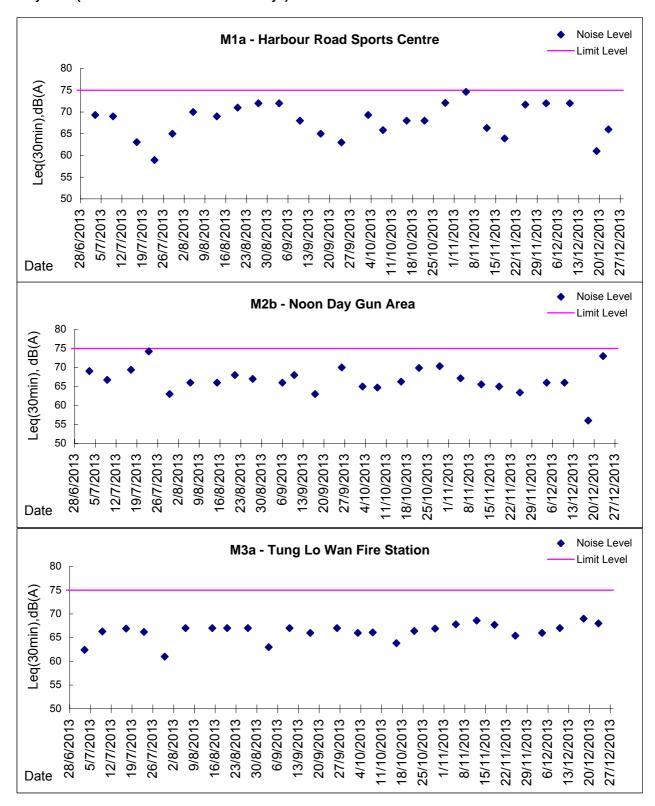
			Measur	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
			004 075 040		Unit: di	3(A), (30-min)		
4/12/2013	10:16	Fine	66.4 67.5 64.0		69	66	75	
10/12/2013	17:45	Fine	66.5	67.5	65.0	69	67	75
18/12/2013	9:20	Fine	68.8	70.5	66.0	69	69	75
23/12/2013	10:46	Fine	67.8 69.0 65.0		69	68	75	

Location: M4b - Victoria Centre

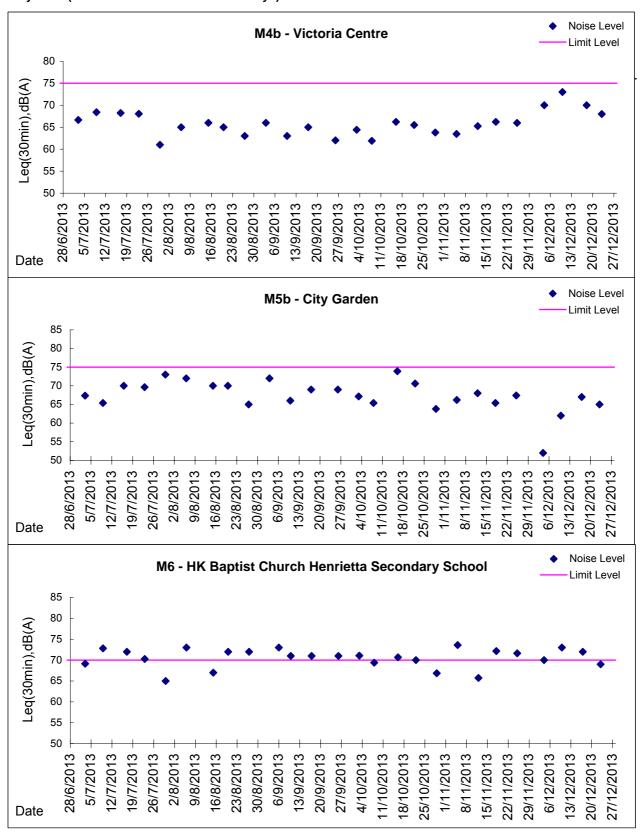
			Measur	ement Noi	se Level	Baseline Noise Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
						Unit: d	B(A), (30min)	
4/12/2013	11:03	Fine	71.8 73.0 69.5		67	70	75	
10/12/2013	8:29	Cloudy	73.9 76.0 68.0		67	73	75	
18/12/2013	10:05	Fine	72.0 73.5 68.0		67	70	75	
23/12/2013	11:24	Fine	70.6 72.5 67.0		67	68	75	

Location: M5b - City Garden

			Measure	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq L10 L90		L90	Leq	Leq	Leq
			004 700 055		Unit: d	B(A), (30min)		
4/12/2013	15:37	Fine	68.1 70.0 65.5		68	52	75	
10/12/2013	10:36	Cloudy	68.9 70.0 66.5		68	62	75	
17/12/2013	15:05	Cloudy	67.1 68.0 64.5		68	67	75	
23/12/2013	13:07	Fine	69.8 71.0 68.0		68	65	75	


Location: M6 - HK Baptist Church Henrietta Secondary School

			Measur	Measurement Noise Level		Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq L10 L90		Leq	Leq	Leq	
					Unit: di	3(A), (30-min)		
4/12/2013	16:48	Fine	73.2	74.0	71.5	71	70	70
10/12/2013	9:18	Cloudy	75.2	76.0	73.0	71	73	65
18/12/2013	10:40	Fine	74.6	76.6	73.2	71	72	65
23/12/2013	14:50	Fine	73.1	74.5	71.0	71	69	70


Sampling, Field Measurement and Testing Works (Stage 2)

Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

Appendix 5.3

Air Quality Monitoring Results and Graphical Presentations, and odour Patrol Results

Location: CMA1b - Oil Street Site Office

Report on 24-hour TSP monitoring Action Level (μ g/m3) - 176.7 Limit Level (μ g/m3) - 260

Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
2-Dec-13	8:00	Fine	005988	2.6291	2.8802	3786.05	3810.05	24.00	1.38	1.38	1.38	1993	126
7-Dec-13	8:00	Fine	005962	2.6384	2.9136	3813.05	3837.05	24.00	1.36	1.36	1.36	1963	140
13-Dec-13	8:00	Cloudy	007626	2.6175	2.8165	3840.04	3864.04	24.00	1.36	1.36	1.36	1965	101
19-Dec-13	8:00	Cloudy	005972	2.6137	2.7241	3867.04	3891.04	24.00	1.36	1.36	1.36	1964	56
23-Dec-13	8:00	Cloudy	005904	2.6484	2.8694	3894.04	3918.04	24.00	1.32	1.32	1.32	1905	116

Report on 1-hour TSP monitoring Action Level (μ g/m3) - 320.1 Limit Level (μ g/m3) - 500

Date	Sampling	Weather	Filter paper	Filter Weigh	nt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
3-Dec-13	8:20	Fine	006489	2.7402	2.7569	3810.05	3811.05	1.00	1.36	1.36	1.36	82	204
3-Dec-13	9:26	Fine	006492	2.7534	2.7643	3811.05	3812.05	1.00	1.36	1.36	1.36	82	133
3-Dec-13	10:31	Fine	005959	2.6456	2.6639	3812.05	3813.05	1.00	1.36	1.36	1.36	82	223
9-Dec-13	9:56	Fine	007676	2.6222	2.6348	3837.05	3838.05	1.00	1.36	1.36	1.36	82	154
9-Dec-13	10:58	Fine	007675	2.6383	2.6479	3838.05	3839.05	1.00	1.36	1.36	1.36	82	118
9-Dec-13	13:00	Fine	005967	2.6533	2.6754	3839.05	3840.05	1.00	1.36	1.36	1.36	82	271
14-Dec-13	8:10	Rainy	005952	2.6142	2.6328	3864.04	3865.04	1.00	1.36	1.36	1.36	82	227
14-Dec-13	9:15	Rainy	005954	2.6392	2.6598	3865.04	3866.04	1.00	1.36	1.36	1.36	82	252
14-Dec-13	10:20	Rainy	005956	2.6253	2.6427	3866.04	3867.04	1.00	1.36	1.36	1.36	82	212
20-Dec-13	8:20	Cloudy	005854	2.6269	2.6385	3891.04	3892.04	1.00	1.36	1.36	1.36	82	142
20-Dec-13	9:25	Cloudy	005853	2.6303	2.6422	3892.04	3893.04	1.00	1.36	1.36	1.36	82	145
20-Dec-13	10:30	Cloudy	005860	2.6310	2.6415	3893.04	3894.04	1.00	1.36	1.36	1.36	82	128
24-Dec-13	8:20	Rainy	007546	2.6276	2.6363	3918.04	3919.04	1.00	1.32	1.32	1.32	79	110
24-Dec-13	9:25	Rainy	007549	2.6412	2.6466	3919.04	3920.04	1.00	1.32	1.32	1.32	79	68
24-Dec-13	10:30	Rainy	007534	2.6498	2.6586	3920.04	3921.04	1.00	1.32	1.32	1.32	79	111

Location: CMA2a - Causeway Bay Community Centre

Report on 24-hour TSP monitoring Action Level (μ g/m3) - 169.5 Limit Level (μ g/m3) - 260

Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
2-Dec-13	8:00	Fine	006456	2.7572	2.9622	13497.52	13521.52	24.00	1.43	1.42	1.42	2051	100
7-Dec-13	8:00	Fine	005963	2.6542	2.8035	13524.54	13548.54	24.00	1.27	1.27	1.27	1828	82
13-Dec-13	8:00	Cloudy	005968	2.6538	2.9278	13551.54	13575.54	24.00	1.27	1.27	1.27	1830	150
19-Dec-13	8:00	Cloudy	005973	2.6495	2.8074	13578.53	13602.53	24.00	1.27	1.27	1.27	1830	86
24-Dec-13	15:00	Cloudy	006474	2.7661	2.9910	13608.21	13632.21	24.00	1.34	1.34	1.34	1933	116

Due to interruption of electricity supply, the 24hr TSP monitoring was rescheduled from 23 Dec 2013 to 24 Dec 2013.

Report on 1-hour TSP monitoring Action Level (µg/m3) - 323.4 Limit Level (µg/m3) - 500

Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Qsi	Final, Q _{sf}	Average	Volume, m ³	μg/m ³
3-Dec-13	8:05	Fine	006491	2.7375	2.7544	13521.52	13522.52	1.00	1.39	1.39	1.39	83	203
3-Dec-13	9:12	Fine	006288	2.5966	2.6157	13522.52	13523.52	1.00	1.39	1.39	1.39	83	230
3-Dec-13	10:17	Fine	005960	2.6495	2.6686	13523.52	13524.52	1.00	1.39	1.39	1.39	83	230
9-Dec-13	9:50	Fine	007677	2.6462	2.6598	13548.54	13549.54	1.00	1.30	1.30	1.30	78	174
9-Dec-13	10:52	Fine	004806	2.8120	2.8238	13549.54	13550.54	1.00	1.30	1.30	1.30	78	151
9-Dec-13	13:00	Fine	004807	2.8072	2.8231	13550.54	13551.54	1.00	1.30	1.30	1.30	78	203
14-Dec-13	8:00	Rainy	005953	2.6189	2.6419	13575.54	13576.54	1.00	1.31	1.31	1.31	79	293
14-Dec-13	9:05	Rainy	005955	2.6451	2.6674	13576.54	13577.54	1.00	1.31	1.31	1.31	79	284
14-Dec-13	10:10	Rainy	005971	2.6273	2.6449	13577.54	13578.54	1.00	1.31	1.31	1.31	79	224
20-Dec-13	8:10	Cloudy	005512	2.8199	2.8377	13602.53	13603.53	1.00	1.31	1.31	1.31	79	227
20-Dec-13	9:15	Cloudy	005852	2.6528	2.6591	13603.53	13604.53	1.00	1.31	1.31	1.31	79	80
20-Dec-13	10:20	Cloudy	005905	2.6264	2.6353	13604.53	13605.53	1.00	1.31	1.31	1.31	79	113
24-Dec-13	9:03	Rainy	007545	2.6219	2.6294	13605.21	13606.21	1.00	1.30	1.30	1.30	78	96
24-Dec-13	10:15	Rainy	007548	2.6478	2.6563	13606.21	13607.21	1.00	1.30	1.30	1.30	78	109
24-Dec-13	13:00	Rainy	007535	2.6481	2.6502	13607.21	13608.21	1.00	1.30	1.30	1.30	78	27

Location: CMA3a - CWB PRE Site Office Area

Report on 24-hour TSP monitoring Action Level (μ g/m3) - 171 Limit Level (μ g/m3) - 260

Date	Sampling	Weather	Filter paper	Filter Weigh	t, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
2-Dec-13	8:00	Fine	005985	2.6523	2.8642	898.89	922.89	24.00	1.38	1.38	1.38	1985	107
7-Dec-13	8:00	Fine	005966	2.6469	2.9128	925.89	949.89	24.00	1.38	1.37	1.38	1981	134
13-Dec-13	8:00	Cloudy	005969	2.6538	2.9725	952.87	976.87	24.00	1.38	1.38	1.38	1983	161
19-Dec-13	8:00	Cloudy	007807	2.6310	2.7575	979.87	1003.87	24.00	1.41	1.41	1.41	2033	62
23-Dec-13	8:00	Cloudy	006679	2.6478	2.9284	1006.87	1030.87	24.00	1.41	1.41	1.41	2027	138

Report on 1-hour TSP monitoring Action Level (µg/m3) - 311.3 Limit Level (µg/m3) - 500

Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q_{sf}	Average	Volume, m ³	μg/m³
3-Dec-13	8:45	Fine	006248	2.6073	2.6217	922.89	923.89	1.00	1.38	1.38	1.38	83	174
3-Dec-13	9:48	Fine	006250	2.6275	2.6405	923.89	924.89	1.00	1.38	1.38	1.38	83	157
3-Dec-13	10:55	Fine	006475	2.7223	2.7329	924.89	925.89	1.00	1.34	1.34	1.34	81	132
9-Dec-13	10:00	Fine	006235	2.6686	2.6846	949.89	950.89	1.00	1.37	1.37	1.37	82	194
9-Dec-13	13:00	Fine	007671	2.6512	2.6669	950.89	951.89	1.00	1.37	1.37	1.37	82	191
9-Dec-13	15:00	Fine	005806	2.7709	2.7924	951.89	952.89	1.00	1.34	1.34	1.34	80	268
14-Dec-13	8:40	Rainy	007813	2.6499	2.6648	976.87	977.87	1.00	1.38	1.38	1.38	83	180
14-Dec-13	9:45	Rainy	007811	2.6289	2.6439	977.87	978.87	1.00	1.38	1.38	1.38	83	181
14-Dec-13	10:55	Rainy	007809	2.6484	2.6632	978.87	979.87	1.00	1.34	1.34	1.34	81	184
20-Dec-13	8:40	Cloudy	007672	2.6435	2.6534	1003.87	1004.87	1.00	1.41	1.41	1.41	85	117
20-Dec-13	9:45	Cloudy	006683	2.6595	2.6700	1004.87	1005.87	1.00	1.41	1.41	1.41	85	124
20-Dec-13	10:57	Cloudy	006445	2.7282	2.7408	1005.87	1006.87	1.00	1.38	1.38	1.38	83	152
24-Dec-13	8:48	Rainy	007805	2.6333	2.6481	1030.87	1031.87	1.00	1.41	1.41	1.41	84	175
24-Dec-13	10:34	Rainy	007803	2.6550	2.6689	1031.87	1032.87	1.00	1.41	1.41	1.41	84	165
24-Dec-13	14:17	Rainy	006469	2.7456	2.7581	1032.87	1033.87	1.00	1.37	1.37	1.37	82	152

Location: CMA4a - SPCA

Report on 24-hour TSP monitoring Action Level (µg/m3) - 171.2 Limit Level (µg/m3) - 260

Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
2-Dec-13	8:00	Fine	005990	2.6522	2.8240	17696.25	17720.25	24.00	1.35	1.35	1.35	1950	88
7-Dec-13	8:00	Fine	006476	2.7501	2.9591	17723.25	17747.25	24.00	1.35	1.35	1.35	1947	107
13-Dec-13	8:00	Cloudy	006223	2.6432	2.9004	17750.24	17774.24	24.00	1.35	1.35	1.35	1949	132
19-Dec-13	8:00	Cloudy	007808	2.6416	2.7475	17777.24	17801.24	24.00	1.35	1.35	1.35	1948	54
23-Dec-13	8:00	Cloudy	006682	2.6486	2.9017	17805.34	17829.34	24.00	1.35	1.35	1.35	1942	130

Report on 1-hour TSP monitoring Action Level (μ g/m3) - 312.5 Limit Level (μ g/m3) - 500

Date	Sampling	Weather	Filter paper	Filter Weigh	nt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
3-Dec-13	8:35	Fine	006247	2.6293	2.6404	17720.25	17721.25	1.00	1.35	1.35	1.35	81	137
3-Dec-13	9:40	Fine	006249	2.6486	2.6596	17721.25	17722.25	1.00	1.35	1.35	1.35	81	135
3-Dec-13	10:45	Fine	006243	2.6039	2.6130	17722.25	17723.25	1.00	1.32	1.32	1.32	79	115
9-Dec-13	10:26	Fine	006234	2.6429	2.6544	17747.25	17748.25	1.00	1.31	1.31	1.31	79	146
9-Dec-13	13:00	Fine	007673	2.6517	2.6653	17748.25	17749.25	1.00	1.31	1.31	1.31	79	173
9-Dec-13	14:05	Fine	005805	2.7941	2.8114	17749.25	17750.25	1.00	1.31	1.31	1.31	79	219
14-Dec-13	8:46	Rainy	007796	2.6187	2.6335	17724.24	17725.24	1.00	1.32	1.32	1.32	79	187
14-Dec-13	9:50	Rainy	007812	2.6400	2.6534	17725.24	17726.24	1.00	1.32	1.32	1.32	79	169
14-Dec-13	10:53	Rainy	007810	2.6133	2.6255	17726.24	17727.24	1.00	1.32	1.32	1.32	79	154
20-Dec-13	8:46	Cloudy	007674	2.6250	2.6291	17802.34	17803.34	1.00	1.35	1.35	1.35	81	51
20-Dec-13	9:50	Cloudy	006446	2.7624	2.7710	17803.34	17804.34	1.00	1.35	1.35	1.35	81	106
20-Dec-13	10:53	Cloudy	006681	2.6453	2.6565	17804.34	17805.34	1.00	1.35	1.35	1.35	81	138
24-Dec-13	8:40	Rainy	006399	2.6922	2.7105	17829.34	17830.34	1.00	1.35	1.35	1.35	81	226
24-Dec-13	10:18	Rainy	007804	2.6309	2.6465	17830.34	17831.34	1.00	1.35	1.35	1.35	81	193
24-Dec-13	14:08	Rainy	006470	2.7432	2.7556	17831.34	17832.34	1.00	1.35	1.35	1.35	81	153

Location: CMA5a - Children Garden opposite to Pedestrian Plaza

Report on 24-hour TSP monitoring Action Level ($\mu g/m3$) - 181 Limit Level ($\mu g/m3$) - 260

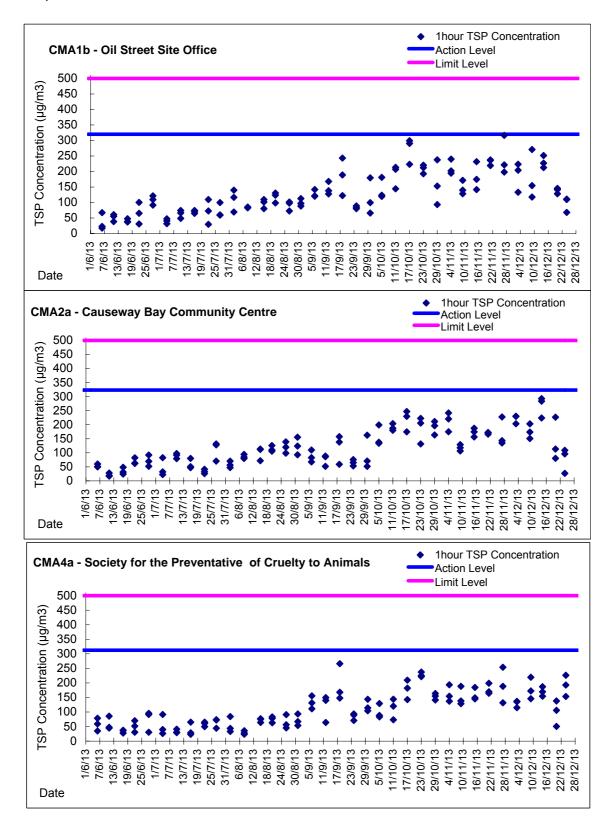
Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
2-Dec-13	8:00	Fine	007633	2.6505	2.8230	18703.16	18727.16	24.00	1.36	1.36	1.36	1961	88
7-Dec-13	8:00	Fine	005965	2.6493	2.9351	18730.16	18754.16	24.00	1.36	1.36	1.36	1957	146
13-Dec-13	8:00	Cloudy	005802	2.7735	3.0648	18757.15	18781.15	24.00	1.32	1.32	1.32	1901	153
19-Dec-13	8:00	Cloudy	007559	2.6605	2.7752	18784.15	18808.15	24.00	1.32	1.32	1.32	1901	60
23-Dec-13	8:00	Cloudy	006418	2.7553	2.9762	18811.15	18835.15	24.00	1.32	1.31	1.31	1893	117

 $\begin{array}{ccc} \text{Report on 1-hour TSP monitoring} \\ \text{Action Level } (\mu\text{g/m3}) - & 332 \\ \text{Limit Level } (\mu\text{g/m3}) - & 500 \end{array}$

Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
3-Dec-13	8:38	Fine	006030	2.6259	2.6391	18727.16	18728.16	1.00	1.36	1.36	1.36	82	162
3-Dec-13	9:42	Fine	005796	2.8551	2.8717	18728.16	18729.16	1.00	1.36	1.36	1.36	82	203
3-Dec-13	10:50	Fine	005798	2.8527	2.8663	18729.16	18730.16	1.00	1.36	1.36	1.36	82	167
9-Dec-13	8:06	Fine	006468	2.7513	2.7689	18754.16	18755.16	1.00	1.35	1.35	1.35	81	217
9-Dec-13	9:29	Fine	005935	2.6337	2.6594	18755.16	18756.16	1.00	1.35	1.35	1.35	81	316
9-Dec-13	13:00	Fine	006217	2.6638	2.6765	18756.16	18757.16	1.00	1.35	1.35	1.35	81	156
14-Dec-13	8:30	Rainy	007550	2.6373	2.6483	18781.15	18782.15	1.00	1.36	1.36	1.36	82	135
14-Dec-13	9:35	Rainy	007553	2.6417	2.6511	18782.15	18783.15	1.00	1.36	1.36	1.36	82	115
14-Dec-13	10:40	Rainy	007556	2.6723	2.6827	18783.15	18784.15	1.00	1.36	1.36	1.36	82	127
20-Dec-13	8:30	Cloudy	007562	2.6597	2.6671	18808.15	18809.15	1.00	1.36	1.36	1.36	82	91
20-Dec-13	9:35	Cloudy	007565	2.6635	2.6719	18809.15	18810.15	1.00	1.36	1.36	1.36	82	103
20-Dec-13	10:40	Cloudy	006421	2.7520	2.7594	18810.15	18811.15	1.00	1.36	1.36	1.36	82	91
24-Dec-13	8:35	Rainy	007663	2.6306	2.6389	18835.15	18836.15	1.00	1.35	1.35	1.35	81	102
24-Dec-13	9:45	Rainy	007657	2.6286	2.6382	18836.15	18837.15	1.00	1.35	1.35	1.35	81	118
24-Dec-13	10:50	Rainy	007662	2.6438	2.6531	18837.15	18838.15	1.00	1.35	1.35	1.35	81	115

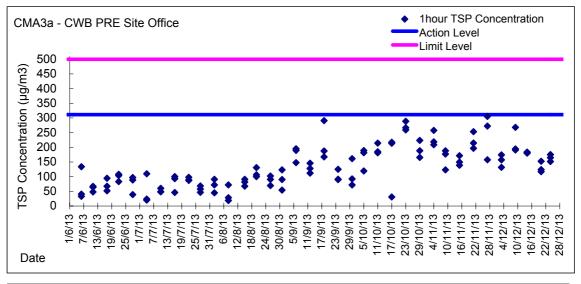
Location: CMA6a - WD2 PRE Office

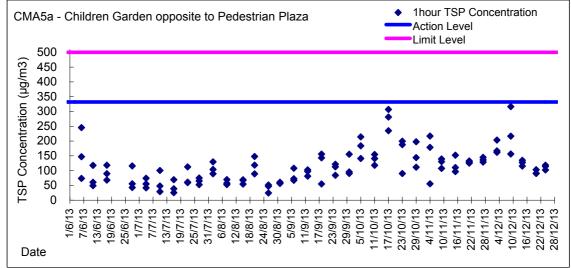
 $\begin{array}{ccc} \text{Report on 24-hour TSP monitoring} \\ \text{Action Level -} & 187.3 & \mu\text{g/m3} \\ \text{Limit Level -} & 260 & \mu\text{g/m3} \end{array}$

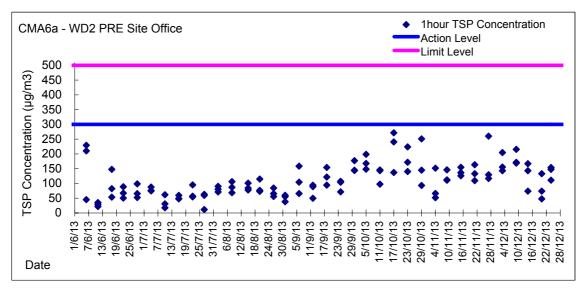

Date	Sampling	Weather	Filter paper	Filter Weigh	ıt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
2-Dec-13	8:00	Fine	006487	2.7641	2.9290	17006.51	17030.51	24.00	1.33	1.33	1.33	1914	86
7-Dec-13	8:00	Fine	006212	2.6698	2.9144	17033.88	17057.88	24.00	1.33	1.33	1.33	1910	128
13-Dec-13	8:00	Cloudy	005800	2.8396	3.1093	17060.87	17084.87	24.00	1.37	1.37	1.37	1969	137
19-Dec-13	8:00	Cloudy	007558	2.6693	2.7634	17087.87	17111.87	24.00	1.37	1.37	1.37	1969	48
23-Dec-13	8:00	Cloudy	006419	2.7848	3.1072	17114.87	17138.87	24.00	1.36	1.36	1.36	1961	164

Report on 1-hour TSP monitoring Action Level - 300.1 μ g/m³ Limit Level - 500 μ g/m3

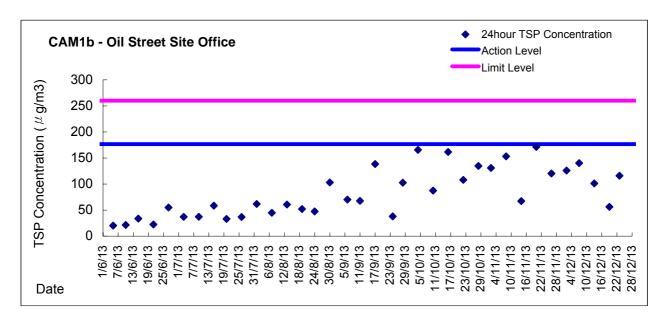
Date	Sampling	Weather	Filter paper	Filter Weigh	t, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
3-Dec-13	8:48	Fine	006029	2.6327	2.6451	17030.51	17031.51	1.00	1.33	1.33	1.33	80	156
3-Dec-13	9:50	Fine	006031	2.6513	2.6627	17031.51	17032.51	1.00	1.33	1.33	1.33	80	143
3-Dec-13	13:00	Fine	005799	2.8548	2.8711	17032.51	17033.51	1.00	1.33	1.33	1.33	80	205
9-Dec-13	8:14	Fine	006467	2.7562	2.7733	17057.88	17058.88	1.00	1.32	1.32	1.32	79	216
9-Dec-13	9:45	Fine	006214	2.6613	2.6747	17058.88	17059.88	1.00	1.32	1.32	1.32	79	169
9-Dec-13	13:00	Fine	006215	2.6331	2.6467	17059.88	17060.88	1.00	1.32	1.32	1.32	79	171
14-Dec-13	8:20	Rainy	007568	2.6572	2.6686	17084.87	17085.87	1.00	1.33	1.33	1.33	80	143
14-Dec-13	9:25	Rainy	007552	2.6555	2.6688	17085.87	17086.87	1.00	1.33	1.33	1.33	80	167
14-Dec-13	10:30	Rainy	007555	2.6699	2.6758	17086.87	17087.87	1.00	1.33	1.33	1.33	80	74
20-Dec-13	8:25	Cloudy	007561	2.6484	2.6522	17111.87	17112.87	1.00	1.33	1.33	1.33	80	48
20-Dec-13	9:30	Cloudy	007564	2.6830	2.6936	17112.87	17113.87	1.00	1.33	1.33	1.33	80	133
20-Dec-13	10:35	Cloudy	007567	2.6696	2.6755	17113.87	17114.87	1.00	1.33	1.33	1.33	80	74
24-Dec-13	8:25	Rainy	007665	2.6666	2.6788	17138.87	17139.87	1.00	1.32	1.32	1.32	79	154
24-Dec-13	9:30	Rainy	007659	2.6367	2.6484	17139.87	17140.87	1.00	1.32	1.32	1.32	79	148
24-Dec-13	10:35	Rainy	007654	2.6442	2.6530	17140.87	17141.87	1.00	1.32	1.32	1.32	79	111

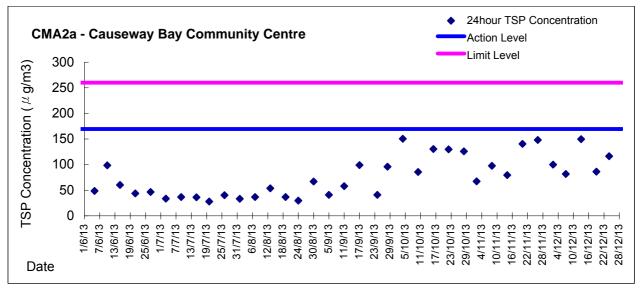


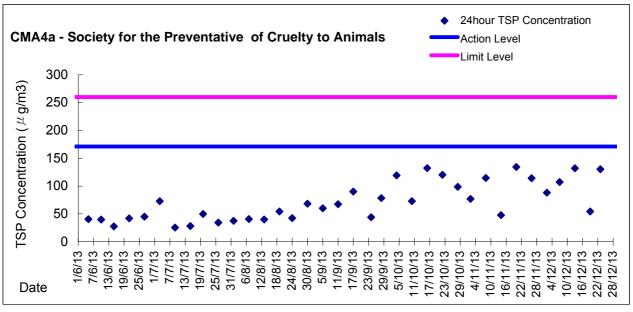

Graphic Presentation of 1 hour TSP Result



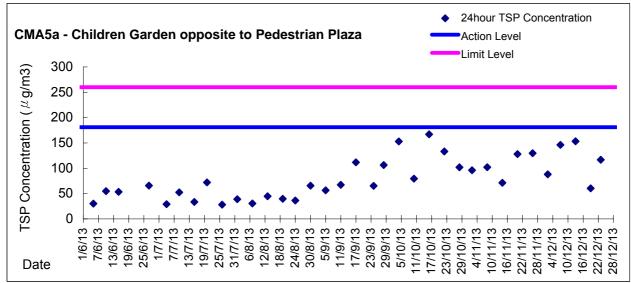
Graphic Presentation of 1 hour TSP Result







Graphic Presentation of 24 hour TSP Result



Graphic Presentation of 24 hour TSP Result

Appendix 5.4

Water Quality Monitoring Results and Graphical Presentations

Water Monitoring Result at WSD9 - Tai Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		рН			Salini	ty	D	O Satur	ation		DO mg/L			Turbid		Suspende	ed Solids
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	lue	Average		Average
28/11/2013	15:35	Fine	Middle	3.5	21.50	21.50	21.50	8.12	8.12	8.12	32.40	32.40	32.41	87.7	88.3	88.4	6.42	6.48	6.48	4.72	4.71	4.67	7	7.00
20/11/2013	15:37	rille	Middle	3.5	21.50	21.50	21.50	8.12	8.12	0.12	32.41	32.41	32.41	88.8	88.9	00.4	6.50	6.51	0.40	4.69	4.57	4.07	7	7.00
30/11/2013	17:20	Fine	Middle	3.5	20.90	20.90	20.80	8.19	8.19	8.19	32.35	32.35	32.36	86.4	88.1	88.0	6.40	6.52	6.52	4.73	4.71	4.72	4	4.00
30/11/2013	17:22	TITIE	Middle	3.5	20.70	20.70	20.00	8.19	8.19	0.19	32.36	32.36	32.30	88.6	89.0	00.0	6.57	6.60	0.32	4.71	4.71	4.72	4	4.00
2/12/2013	17:30	Fine	Middle	3.5	21.10	21.10	21.10	8.17	8.17	8.17	32.33	32.33	32.33	98.1	98.0	98.3	6.96	6.96	6.97	3.79	3.66	3.77	5	4.50
2/12/2013	17:32	TINC	Middle	3.5	21.10	21.10	21.10	8.17	8.17	0.17	32.33	32.33	32.33	98.4	98.6	30.3	6.98	6.99	0.57	3.81	3.82	5.11	4	4.50
4/12/2013	18:05	Fine	Middle	2.5	20.60	20.60	20.58	8.23	8.23	8.23	33.32	33.32	33.30	85.5	85.7	85.1	6.33	6.35	6.30	4.12	4.22	4.16	4	4.00
4/12/2013	18:06	TINC	Middle	2.5	20.50	20.60	20.50	8.23	8.23	0.25	33.27	33.27	33.30	84.8	84.2	00.1	6.27	6.24	0.50	4.16	4.14	4.10	4	4.00
7/12/2013	9:15	Fine	Middle	3.0	19.60	19.60	19.60	8.24	8.24	8.24	32.37	32.37	32.37	88.2	88.7	88.4	6.69	6.73	6.70	4.20	4.21	4.21	4	4.50
771272010	9:17	TINC	Middle	3.0	19.60	19.60	10.00	8.23	8.23	0.24	32.37	32.37	02.07	88.6	88.0	00.4	6.72	6.67	0.70	4.21	4.21	4.21	5	4.00
9/12/2013	8:45	Fine	Middle	3.0	20.90	20.90	20.90	8.50	8.50	8.50	32.86	32.86	32.86	88.88	88.3	88.3	6.54	6.51	6.51	4.97	4.98	5.04	20	20.00
3/12/2013	8:47	TINC	Middle	3.0	20.90	20.90	20.30	8.50	8.50	0.50	32.86	32.86	32.00	88.1	88.0	00.5	6.50	6.50	0.51	5.11	5.11	3.04	20	20.00
11/12/2013	10:20	Fine	Middle	2.5	19.80	19.80	19.80	8.19	8.19	8.19	32.75	32.75	32.76	89.8	90.5	89.8	6.76	6.85	6.76	6.42	6.43	6.42	<2	<2
11/12/2013	10:22	TINC	Middle	2.5	19.80	19.80	15.00	8.19	8.19	0.15	32.76	32.76	32.70	89.6	89.1	03.0	6.73	6.70	0.70	6.42	6.41	0.42	<2	
13/12/2013	12:20	Cloudy	Middle	3.0	20.80	20.80	20.80	8.16	8.16	8.16	31.45	31.45	31.56	87.2	87.1	87.1	6.42	6.41	6.41	3.66	3.65	3.65	3	4.00
10/12/2010	12:22	Cloudy	Middle	3.0	20.80	20.80	20.00	8.16	8.16	0.10	31.67	31.67	01.00	87.0	87.0	07.1	6.40	6.39	0.41	3.65	3.63	0.00	5	4.00
16/12/2013	17:39	Cloudy	Middle	3.0	18.90	18.90	18.90	8.15	8.15	8.15	33.49	33.49	33.49	84.1	84.0	84.5	6.40	6.40	6.44	6.61	6.60	6.50	4	5.00
10/12/2010	17:41	Cloudy	Middle	3.0	18.90	18.90	10.00	8.15	8.15	0.10	33.49	33.49	00.40	84.9	84.8	04.0	6.47	6.47	0.44	6.50	6.30	0.00	6	0.00
18/12/2013	18:45	Fine	Middle	3.5	17.70	17.70	17.70	8.45	8.45	8.45	35.86	35.86	35.86	96.7	96.4	96.1	7.44	7.42	7.40	2.90	2.90	2.91	5	5.00
16/12/2010	18:47	1 1110	Middle	3.5	17.70	17.70		8.45	8.45	0.10	35.85	35.86	00.00	95.4	95.9	00.1	7.35	7.39		2.91	2.93	2.0 .	5	0.00
21/12/2013	8:15	Fine	Middle	2.5	17.70	17.70	17.70	8.28	8.28	8.28	36.06	36.06	36.06	88.3	88.2	88.0	6.80	6.79	6.78	8.39	8.42	<u>8.45</u>	7	7.00
	8:17		Middle	2.5	17.70	17.70		8.28	8.28		36.06	36.06		87.9	87.5		6.78	6.75		8.49	8.49		7	
24/12/2013	8:05	Fine	Middle	2.5	16.50	16.50	16.50	8.31	8.31	8.31	36.10	36.10	36.10	83.6	84.4	84.0	6.58	6.66	6.63	6.90	6.87	6.86	4	4.50
	8:07		Middle	2.5	16.50	16.50		8.31	8.31		36.10	36.10		83.8	84.2		6.62	6.65		6.83	6.82		5	
26/12/2013	13:25	Fine	Middle	2.5	18.00	18.00	17.98	8.25	8.25	8.25	33.76	33.76	33.77	87.9	88.2	88.0	6.82	6.86	6.83	4.32	4.02	4.05	5	5.50
20.12.20.0	13:26		Middle	2.5	17.90	18.00		8.25	8.25	0.20	33.77	33.77		88.2	87.6	00.0	6.85	6.77	0.00	3.96	3.89		6	0.00

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbid		Suspende	ed Solids
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	lue	Average		Average
28/11/2013	11:30	Fine	Middle	3.0	20.90	20.90	20.85	8.07	8.07	8.08	31.98	31.98	31.98	83.2	83.8	83.5	6.17	6.22	6.21	3.41	3.44	3.43	6	6.50
26/11/2013	11:32	rille	Middle	3.0	20.80	20.80	20.65	8.09	8.09	0.00	31.98	31.98	31.90	83.0	83.9	65.5	6.21	6.23	0.21	3.45	3.43	3.43	7	0.50
30/11/2013	15:30	Fine	Middle	2.5	20.60	20.60	20.60	8.17	8.17	8.18	32.38	32.38	32.39	91.3	91.9	92.0	6.79	6.84	6.85	6.16	6.16	6.14	8	8.00
30/11/2013	15:32	Tille	Middle	2.5	20.60	20.60	20.00	8.18	8.18	0.10	32.39	32.39	32.39	92.3	92.4	92.0	6.87	6.88	0.03	6.15	6.10	0.14	8	0.00
2/12/2013	16:00	Fine	Middle	3.5	20.40	20.40	20.40	8.16	8.16	8.16	32.42	32.42	32.42	86.2	87.3	87.0	6.42	6.51	6.48	4.15	4.12	4.09	5	4.00
271272010	16:02	TINC	Middle	3.5	20.40	20.40	20.40	8.16	8.16	0.10	32.42	32.42	02.42	87.2	87.1	07.0	6.49	6.50	0.40	4.06	4.02	4.00	3	4.00
4/12/2013	19:55	Fine	Middle	3.5	20.20	20.20	20.15	8.26	8.26	8.26	33.44	33.44	33.48	85.8	85.4	85.5	6.39	6.32	6.28	4.93	5.06	5.06	4	4.00
	19:56	1 1110	Middle	3.5	20.10	20.10	20.10	8.26	8.26	0.20	33.52	33.52	00.10	85.9	85.0	00.0	6.10	6.31	0.20	5.15	5.10	0.00	4	
7/12/2013	10:05	Fine	Middle	3.0	20.40	20.40	20.40	8.21	8.21	8.21	32.68	32.68	32.68	91.1	90.7	91.0	6.78	6.76	6.77	8.00	7.69	7.80	14	14.50
	10:07		Middle	3.0	20.40	20.40		8.21	8.21		32.68	32.68		91.1	90.9		6.78	6.77		7.73	7.79		15	
9/12/2013	10:00	Fine	Middle	3.0	21.10	21.10	21.10	8.13	8.13	8.13	32.39	32.39	32.39	80.1	79.0	79.5	5.89	5.82	5.85	3.83	3.83	3.83	6	11.50
	10:02		Middle	3.0	21.10	21.10		8.13	8.13		32.39	32.39		79.0	79.7		5.81	5.87		3.84	3.80		17	
11/12/2013	11:20	Fine	Middle	3.5	20.40	20.40	20.40	8.17	8.17	8.17	32.58	32.58	32.59	87.2	86.0	86.3	5.50	5.41	5.45	3.00	2.95	2.95	4	4.00
	11:24		Middle	3.5	20.40	20.40		8.17	8.17		32.59	32.59		86.2	85.9		5.43	5.46		2.94	2.92		4	
13/12/2013	13:29	Cloudy	Middle	3.0	20.70	20.70	20.70	8.23	8.23	8.23	33.66	33.66	33.66	88.2	88.6	88.3	6.49	6.52	6.49	3.56	3.56	3.56	2	2.00
	13:32	Í	Middle	3.0	20.70	20.70		8.23	8.23		33.66	33.66		88.4	87.8		6.50	6.46		3.57	3.56		2	
16/12/2013	16:30	Cloudy	Middle	2.5	18.90	18.90	18.80	8.30	8.30	8.31	33.32	33.32	33.47	85.1	85.6	85.2	6.50	6.53	6.50	7.01	7.01	7.02	4	4.50
	16:32	,	Middle	2.5	18.70	18.70		8.32	8.32		33.61	33.61		85.0	85.0		6.49	6.49		7.02	7.02		5	
18/12/2013	16:50	Fine	Middle	3.0	17.70	17.70	17.70	8.33	8.33	8.33	35.71	35.71	35.71	92.4	92.5	92.4	7.11	7.13	7.11	4.31	4.31	4.30	8	6.50
	16:52		Middle	3.0	17.70	17.70		8.33	8.33		35.71	35.71		91.9	92.8		7.08	7.11		4.30	4.27		5	
21/12/2013	9:10	Fine	Middle	3.0	17.90	17.90	17.90	8.55	8.55	8.55	36.09	36.09	36.09	89.5	90.3	89.5	6.84	6.90	6.85	7.87	7.87	7.86	11	10.00
	9:12		Middle	3.0	17.90	17.90		8.55	8.55		36.09	36.09		89.2	89.0		6.83	6.81		7.87	7.83		9	<u> </u>
24/12/2013	9:15	Fine	Middle	3.0	17.80	17.80	17.80	8.50	8.50	8.50	35.93	35.93	35.95	89.7	89.5	89.2	6.88	6.87	6.85	5.43	5.41	5.39	7	6.00
	9:17		Middle	3.0	17.80	17.80		8.50	8.50		35.96	35.96		89.2	88.5		6.85	6.80		5.40	5.30		5	
26/12/2013	9:30	Fine	Middle	3.0	17.60	17.60	17.55	8.26	8.26	8.26	31.33	31.33	31.33	71.4	72.1	72.4	5.66	5.71	5.73	4.07	3.89	3.84	10	10.00
	9:31		Middle	3.0	17.50	17.50		8.26	8.26		31.33	31.33		72.9	73.0		5.78	5.78		3.67	3.74		10	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at C7 - Windsor House Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Condition	r	m	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average		Average
28/11/2013	14:15	Fine	Middle	1.5	21.40	21.40	21.40	7.97	7.97	7.97	31.09	31.09	31.09	57.5	58.2	58.1	4.25	4.30	4.30	1.25	1.26	1.24	6	5.50
20/11/2013	14:17	Fille	Middle	1.5	21.40	21.40	21.40	7.97	7.97	7.97	31.09	31.09	31.09	58.2	58.6	30.1	4.30	4.33	4.30	1.25	1.21	1.24	5	5.50
30/11/2013	15:02	Fine	Middle	1.5	21.00	21.00	21.00	8.06	8.06	8.05	31.32	31.32	31.32	60.1	60.5	60.5	4.47	4.50	4.50	3.78	3.76	3.75	3	3.00
30/11/2013	15:04	Tille	Middle	1.5	21.00	21.00	21.00	8.04	8.04	0.03	31.32	31.32	31.32	60.7	60.7	00.5	4.51	4.50	4.50	3.74	3.73	3.73	3	3.00
2/12/2013	15:30	Fine	Middle	1.5	21.60	21.60	21.60	8.06	8.06	8.06	31.74	31.74	31.74	70.1	70.4	70.5	5.16	5.17	5.17	5.53	5.45	5.46	3	4.00
2/12/2013	15:32	Tille	Middle	1.5	21.60	21.60	21.00	8.06	8.06	0.00	31.74	31.74	31.74	70.7	70.8	70.5	5.17	5.18	3.17	5.42	5.42	3.40	5	4.00
4/12/2013	19:25	Fine	Middle	1.5	20.00	20.00	19.95	8.13	8.13	8.13	32.75	32.75	32.75	69.4	70.6	70.0	5.21	5.31	5.26	14.78	14.81	14.76	23	23.00
4/12/2013	19:26	Tille	Middle	1.5	19.90	19.90	10.00	8.13	8.13	0.10	32.76	32.75	32.73	69.9	70.1	70.0	5.25	5.27	3.20	14.75	14.70	14.70	23	23.00
7/12/2013	11:32	Fine	Middle	1.5	20.90	20.90	20.90	8.05	8.05	8.05	31.68	31.68	31.68	62.5	62.6	62.4	4.64	4.64	4.63	2.85	2.81	2.81	4	4.00
771272013	11:34	TIIIC	Middle	1.5	20.90	20.90	20.50	8.05	8.05	0.00	31.68	31.68	31.00	62.3	62.3	02.4	4.62	4.62	4.00	2.78	2.80	2.01	4	4.00
9/12/2013	12:47	Fine	Middle	1.5	22.00	22.00	22.15	8.02	8.02	8.01	31.89	31.89	31.89	63.1	63.5	64.6	4.58	4.61	4.68	4.85	4.88	4.90	11	11.00
3/12/2013	12:49	Tillo	Middle	1.5	22.30	22.30	22.13	8.00	8.00	0.01	31.89	31.89	31.03	65.0	66.7	04.0	4.70	4.83	4.00	4.91	4.95	4.50	11	11.00
11/12/2013	16:17	Fine	Middle	1.5	21.50	21.50	21.60	8.03	8.03	8.02	31.81	31.81	31.81	61.5	62.1	61.6	4.50	4.54	4.51	3.06	3.04	3.04	4	3.50
11/12/2010	16:19	Tillo	Middle	1.5	21.70	21.70	21.00	8.01	8.01	0.02	31.80	31.80	01.01	61.6	61.3	01.0	4.50	4.48	4.01	3.03	3.02	0.04	3	0.00
13/12/2013	15:47	Cloudy	Middle	1.5	20.80	20.80	20.80	8.14	8.14	8.14	32.63	32.63	32.62	59.7	59.8	60.0	4.41	4.43	4.44	3.21	3.18	3.17	2	2.00
10/12/2010	15:49	oloudy	Middle	1.5	20.80	20.80	20.00	8.14	8.14	0	32.60	32.60	02.02	60.3	60.1	00.0	4.46	4.45		3.14	3.13	0.11	2	2.00
16/12/2013	15:52	Cloudy	Middle	1.5	18.10	18.10	18.10	8.23	8.23	8.23	32.05	32.05	32.05	62.1	62.6	62.8	4.85	4.89	4.91	39.13	39.13	<u>39.13</u>	66	65.50
10/12/2010	15:54	oloddy	Middle	1.5	18.10	18.10	10.10	8.23	8.23	0.20	32.05	32.05	02.00	63.4	63.2	02.0	4.96	4.94	4.01	39.13	39.14	00.10	65	00.00
18/12/2013	16:22	Fine	Middle	1.5	18.20	18.20	18.20	8.35	8.35	8.35	34.19	34.19	34.19	64.7	65.4	65.3	4.98	5.03	5.03	2.50	2.51	2.51	2	2.00
10/12/2010	16:24		Middle	1.5	18.20	18.20	10.20	8.35	8.35	0.00	34.19	34.19	0 10	65.4	65.6	00.0	5.04	5.05	0.00	2.50	2.52	2.01	<2	2.00
21/12/2013	10:32	Fine	Middle	1.5	18.40	18.40	18.40	8.47	8.47	8.47	35.14	35.14	35.14	71.4	72.0	71.8	5.44	5.48	5.47	5.19	5.20	5.22	4	4.50
	10:34	0	Middle	1.5	18.40	18.40		8.47	8.47	±	35.14	35.14		72.1	71.6		5.49	5.46		5.22	5.25		5	
24/12/2013	12:02	Fine	Middle	1.5	18.50	18.50	18.50	8.42	8.42	8.42	35.26	35.26	35.27	56.1	56.8	56.7	4.29	4.31	4.31	4.08	4.09	4.08	5	4.00
	12:04	=	Middle	1.5	18.50	18.50		8.41	8.41		35.27	35.27		56.8	57.1		4.31	4.34		4.08	4.06		3	
26/12/2013	10:20	Fine	Middle	1.0	17.60	17.60	17.55	8.32	8.32	8.32	31.97	31.96	32.01	62.8	63.4	63.2	4.95	5.00	4.99	6.93	6.98	6.96	6	6.50
20/12/2010	10:21	1 1110	Middle	1.0	17.50	17.50	17.00	8.31	8.31	0.02	32.05	32.05	02.01	63.6	63.0	00. <u>L</u>	5.02	4.98	4.00	6.97	6.95	0.00	7	0.00

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at C1 - HKCEC Extension Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
28/11/2013	13:53	Fine	Middle	2.0	21.60	21.60	21.60	8.39	8.39	8.39	35.20	35.20	35,20	65.8	66.1	66.2	4.72	4.75	4.76	5.80	5.72	5.70	5	5.00
26/11/2013	13:55	Fille	Middle	2.0	21.60	21.60	21.00	8.39	8.39	0.59	35.20	35.20	35.20	66.8	66.1	00.2	4.81	4.76	4.70	5.69	5.57	5.70	5	5.00
30/11/2013	15:48	Fine	Middle	2.0	21.00	21.00	21.00	8.42	8.42	8.42	35.12	35.12	35.21	55.0	55.0	54.8	3.99	3.99	3.97	5.70	5.70	5.72	4	4.50
30/11/2013	15:50	Tille	Middle	2.0	21.00	21.00	21.00	8.42	8.42	0.42	35.30	35.30	33.21	54.8	54.3	34.0	3.97	3.94	5.91	5.70	5.78	5.72	5	4.50
2/12/2013	15:42	Fine	Middle	2.5	20.60	20.60	20.60	8.60	8.60	8.60	35.40	35.40	35.40	68.9	68.7	68.8	5.04	5.03	5.04	4.72	4.73	4.73	4	4.00
2/12/2010	15:44	Tillo	Middle	2.5	20.60	20.60	20.00	8.60	8.60	0.00	35.40	35.40	00.40	68.3	69.2	00.0	5.01	5.07	0.04	4.72	4.73	4.70	4	4.00
4/12/2013	18:43	Fine	Middle	3.0	20.60	20.60	20.50	8.40	8.40	8.40	35.44	35.44	35.44	68.9	68.6	68.4	5.04	5.02	5.01	4.59	4.55	4.55	5	5.00
4712/2010	18:45	1110	Middle	3.0	20.40	20.40	20.00	8.39	8.39	0.40	35.44	35.44	00.44	68.1	67.9	00.4	4.99	4.98	0.01	4.54	4.50	4.00	5	0.00
7/12/2013	10:38	Fine	Middle	2.0	20.70	20.70	20.70	8.39	8.39	8.40	35.53	35.53	35.54	68.4	69.3	68.7	4.98	5.05	5.01	5.31	5.33	5.31	12	11.50
771272010	10:40	Tillo	Middle	2.0	20.70	20.70	20.70	8.40	8.40	0.40	35.54	35.54	00.04	68.8	68.3	00.1	5.01	4.98	0.01	5.33	5.27	0.01	11	11.00
9/12/2013	11:15	Fine	Middle	2.5	21.00	21.00	21.00	8.39	8.39	8.39	35.43	35.43	35.43	68.7	68.8	68.9	4.98	4.98	4.99	5.34	5.32	5.30	9	9.00
0/12/2010	11:17	Tillo	Middle	2.5	21.00	21.00	21.00	8.38	8.38	0.00	35.43	35.43	00.40	69.0	69.1	00.0	5.00	5.01	4.00	5.26	5.27	0.00	9	0.00
11/12/2013	14:23	Fine	Middle	3.0	20.60	20.60	20.60	8.43	8.43	8.43	35.57	35.57	35.57	70.1	71.2	70.6	5.12	5.20	5.16	3.21	3.21	3.21	3	3.00
	14:25		Middle	3.0	20.60	20.60		8.43	8.43		35.57	35.57		71.0	70.0		5.18	5.13		3.21	3.21	J	3	
13/12/2013	15:25	Cloudy	Middle	2.5	20.80	20.80	20.80	8.19	8.19	8.18	32.60	32.60	32.60	76.0	74.1	75.0	5.62	5.48	5.55	4.07	4.10	4.11	4	3.50
	15:27	,	Middle	2.5	20.80	20.80		8.16	8.16		32.60	32.60		75.1	74.7		5.56	5.52		4.13	4.14		3	
16/12/2013	16:21	Cloudy	Middle	2.5	19.60	19.60	19.60	8.19	8.19	8.19	32.37	32.37	32.38	80.7	81.1	81.1	6.13	6.17	6.17	5.66	5.68	5.67	3	3.00
	16:23	,	Middle	2.5	19.60	19.60		8.19	8.19		32.38	32.38		81.3	81.4		6.19	6.20		5.67	5.68		3	
18/12/2013	15:50	Fine	Middle	2.0	18.80	18.80	14.10	8.24	8.24	8.24	32.56	32.56	32.56	80.6	81.8	81.7	6.20	6.30	6.29	4.61	4.63	4.61	4	4.50
	15:52		Middle	2.0	0.00	18.80		8.24	8.24		32.56	32.56		82.0	82.5		6.31	6.35		4.61	4.60		5	
21/12/2013	10:07	Fine	Middle	2.0	18.80	18.80	18.80	8.24	8.24	8.24	32.78	32.78	32.78	73.6	74.9	75.1	5.66	5.77	5.79	5.53	5.53	5.51	6	6.00
	10:09		Middle	2.0	18.80	18.80		8.24	8.24		32.78	32.78		75.7	76.3		5.83	5.88		5.50	5.49		6	
24/12/2013	11:39	Fine	Middle	2.5	18.50	18.50	18.50	8.20	8.20	8.20	32.81	32.81	32.81	74.2	74.7	74.8	5.73	5.76	5.77	5.79	5.80	5.81	5	5.00
	11:40		Middle	2.5	18.50	18.50		8.20	8.20		32.81	32.81		74.8	75.3		5.77	5.81		5.82	5.84		5	
26/12/2013	10:15	Fine	Middle	2.5	18.00	18.00	17.90	8.19	8.19	8.19	32.80	32.80	32.80	72.8	72.5	72.4	5.67	5.65	5.65	4.99	4.94	4.91	8	7.00
	10:17		Middle	2.5	17.80	17.80		8.19	8.19		32.79	32.79		72.3	72.0		5.64	5.63		4.88	4.83		6	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P1 - HKCEC Phase I Mid-Flood Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Condition	n	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	ilue	Average	Va		Average	Va	alue	Average	Value	Average
28/11/2013	14:26	Fine	Middle	3.0	21.70	21.70	21.75	8.37	8.37	8.37	35.24	35.24	35,24	63.1	63.8	63.6	4.53	4.58	4.56	4.70	4.71	4.69	5	6.00
26/11/2013	14:28	rille	Middle	3.0	21.80	21.80	21.75	8.37	8.37	0.37	35.24	35.24	33.24	63.7	63.6	03.0	4.57	4.56	4.50	4.69	4.67	4.09	7	0.00
30/11/2013	16:20	Fine	Middle	3.0	21.60	21.60	21.55	8.39	8.39	8.40	35.28	35.29	35.31	62.1	61.2	61.9	4.46	4.40	4.45	5.83	5.84	5.81	7	7.00
30/11/2013	16:22	TITIE	Middle	3.0	21.50	21.50	21.55	8.40	8.40	0.40	35.33	35.33	33.31	61.9	62.3	01.9	4.45	4.48	4.43	5.82	5.73	3.01	7	7.00
2/12/2013	16:16	Fine	Middle	3.0	21.10	21.10	21.10	8.45	8.45	8.45	35.47	35.47	35.47	69.4	70.0	69.8	5.02	5.07	5.05	5.21	5.22	5.23	3	3.50
2/12/2010	16:18	TINC	Middle	3.0	21.10	21.10	21.10	8.45	8.45	0.43	35.47	35.47	33.47	69.9	70.0	03.0	5.03	5.07	5.05	5.24	5.23	5.25	4	3.30
4/12/2013	19:34	Fine	Middle	3.0	20.50	20.50	20.45	8.38	8.38	8.39	35.49	35.49	35.50	71.1	70.8	70.7	5.21	5.20	5.20	7.57	7.54	7.52	6	6.00
4712/2010	19:36	1 1110	Middle	3.0	20.40	20.40	20.40	8.39	8.39	0.00	35.50	35.50	00.00	70.7	70.3	70.7	5.20	5.17	0.20	7.52	7.44	7.02	6	0.00
7/12/2013	11:15	Fine	Middle	2.5	20.80	20.80	20.75	8.38	8.38	8.39	35.57	35.57	35.56	68.0	67.4	67.5	4.94	4.90	4.91	4.29	4.25	4.23	9	8.00
	11:17	1 1110	Middle	2.5	20.70	20.70	200	8.39	8.39	0.00	35.56	35.55	00.00	66.9	67.5	01.0	4.87	4.91		4.19	4.17	1.20	7	0.00
9/12/2013	11:50	Fine	Middle	2.5	21.40	21.40	21.40	8.36	8.36	8.36	35.49	35.49	35.49	75.2	75.7	75.9	5.42	5.44	5.44	5.08	5.07	5.05	6	6.50
0/12/2010	11:52	TINC	Middle	2.5	21.40	21.40	21.40	8.36	8.36	0.00	35.49	35.49	00.40	76.3	76.4	70.0	5.43	5.47	0.44	5.01	5.02	0.00	7	0.00
11/12/2013	14:58	Fine	Middle	2.5	20.70	20.70	20.70	8.37	8.37	8.38	35.58	35.57	35.58	70.5	72.6	72.1	5.14	5.30	5.26	3.63	3.63	3.63	<2	<2
	15:00	0	Middle	2.5	20.70	20.70	200	8.38	8.38	0.00	35.57	35.58	00.00	72.9	72.2		5.32	5.26	0.20	3.63	3.63	0.00	<2	
13/12/2013	16:00	Cloudy	Middle	3.0	20.90	20.90	20.90	8.15	8.15	8.14	32.51	32.51	32.55	72.8	71.5	71.8	5.37	5.27	5.30	3.43	3.40	3.37	4	4.50
	16:02	,	Middle	3.0	20.90	20.90		8.13	8.13		32.58	32.58		71.3	71.7		5.26	5.29		3.33	3.31		5	
16/12/2013	16:43	Cloudy	Middle	3.0	19.50	19.50	19.55	8.16	8.16	8.16	32.15	32.15	32.15	75.3	76.6	77.0	5.74	5.86	5.88	3.72	3.71	3.70	3	3.00
	16:45	,	Middle	3.0	19.60	19.60		8.16	8.16		32.15	32.15		78.0	78.0		5.95	5.96		3.68	3.69		3	
18/12/2013	16:22	Fine	Middle	2.5	19.00	19.00	19.00	8.20	8.20	8.20	32.56	32.56	32.56	84.6	84.0	84.9	6.50	6.45	6.54	4.13	4.66	4.30	4	4.00
	16:24		Middle	2.5	19.00	19.00		8.20	8.20		32.56	32.56		85.5	85.6		6.59	6.60		4.19	4.23		4	<u> </u>
21/12/2013	10:38	Fine	Middle	2.5	18.90	18.90	18.90	8.22	8.22	8.22	32.78	32.78	32.78	75.6	75.7	75.4	5.81	5.82	5.80	4.07	4.08	4.08	4	4.00
	10:40		Middle	2.5	18.90	18.90		8.22	8.22		32.78	32.78		75.4	74.9		5.79	5.79		4.06	4.09		4	
24/12/2013	11:10	Fine	Middle	2.5	18.70	18.70	18.70	8.25	8.25	8.25	32.88	32.88	32.88	84.0	83.0	83.1	6.46	6.38	6.39	5.33	5.34	5.34	5	5.00
	11:12		Middle	2.5	18.70	18.70		8.25	8.25		32.88	32.88		82.6	82.8		6.35	6.37		5.32	5.36		5	<u> </u>
26/12/2013	10:53	Fine	Middle	2.5	17.60	17.60	17.50	8.19	8.19	8.19	32.83	32.83	32.83	77.5	77.0	76.8	6.09	6.06	6.05	4.30	4.28	4.26	6	6.00
	10:55		Middle	2.5	17.40	17.40		8.19	8.19		32.83	32.83		76.6	76.2		6.04	6.01		4.25	4.22		6	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P3 - APA Mid-Flood Tide

Date	Time	Weater Condition		Sampling Depth m		er Temp °C	erature	pH -			Salinity ppt			DO Saturation %			DO mg/L				Turbid NTU		Suspended Solids mg/L	
			Г	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	llue	Average	Va	lue	Average	Va	alue	Average	Value	Average
28/11/2013	14:17	Fine	Middle	2.5	21.40	21.40	21.40	8.36	8.36	8.36	35.23	35.23	35.23	65.4	65.6	65.8	4.74	4.76	4.78	3.99	4.01	4.07	6	5.50
20/11/2010	14:19		Middle	2.5	21.40	21.40	20	8.36	8.36	0.00	35.23	35.23	00.20	66.2	66.1	00.0	4.81	4.80	0	4.13	4.15		5	0.00
30/11/2013	16:10	Fine	Middle	3.0	21.60	21.60	21.50	8.40	8.40	8.40	35.15	35.15	35.17	56.8	56.2	55.8	4.09	4.04	4.01	3.22	3.21	3.21	3	2.50
00/11/2010	16:12	Tille	Middle	3.0	21.40	21.40	21.00	8.40	8.40	0.40	35.18	35.18	00.17	55.4	54.6	00.0	3.99	3.93	4.01	3.21	3.21	0.21	2	2.00
2/12/2013	16:07	Fine	Middle	2.5	20.80	20.80	20.80	8.47	8.47	8.47	35.45	35.45	35.45	69.6	69.5	69.7	5.06	5.05	5.07	5.11	5.10	5.09	4	4.00
2/12/2010	16:09	Tille	Middle	2.5	20.80	20.80	20.00	8.47	8.47	0.41	35.45	35.45	00.40	69.8	69.8	00.1	5.08	5.08	0.07	5.08	5.07	0.00	4	4.00
4/12/2013	19:21	Fine	Middle	3.0	20.50	20.50	20.40	8.38	8.38	8.38	35.50	35.50	35.49	69.9	69.4	69.4	5.12	5.10	5.10	4.18	4.15	4.14	6	5.50
4712/2010	19:23	Tille	Middle	3.0	20.30	20.30	20.40	8.37	8.37	0.00	35.48	35.48	00.40	69.2	69.1	00.4	5.09	5.09	0.10	4.11	4.12	4.14	5	0.00
7/12/2013	11:05	Fine	Middle	2.5	20.50	20.50	20.45	8.39	8.39	8.39	35.47	35.47	35.48	64.1	64.4	64.6	4.70	4.71	4.73	4.63	4.55	4.56	8	8.00
771232010	11:07	Tille	Middle	2.5	20.40	20.40	20.40	8.38	8.38	0.00	35.48	35.48	00.40	65.0	64.7	04.0	4.76	4.73	4.70	4.53	4.52	4.00	8	0.00
9/12/2013	11:42	Fine	Middle	2.5	20.90	20.90	20.90	8.37	8.37	8.37	35.44	35.44	35.44	70.6	71.4	70.7	5.13	5.18	5.14	4.28	4.16	4.18	7	7.00
3/12/2013	11:44	TINC	Middle	2.5	20.90	20.90	20.30	8.37	8.37	0.01	35.44	35.44	33.44	70.6	70.2	10.1	5.13	5.10	3.14	4.11	4.15	4.10	7	7.00
11/12/2013	14:50	Fine	Middle	2.5	20.70	20.70	20.65	8.39	8.39	8.39	35.56	35.55	35.56	71.3	71.1	71.3	5.24	5.20	5.22	2.66	2.65	2.64	<2	<2
11/12/2010	14:52	Tille	Middle	2.5	20.60	20.60	20.00	8.39	8.39	0.00	35.56	35.55	00.00	70.1	72.7	71.0	5.13	5.32	0.22	2.61	2.62	2.04	<2	
13/12/2013	15:49	Cloudy	Middle	3.0	20.70	20.70	20.65	8.14	8.14	8.14	32.60	32.60	32.62	79.1	78.2	77.7	5.86	5.79	5.76	3.27	3.23	3.23	4	4.00
10/12/2010	15:51	Cidady	Middle	3.0	20.60	20.60	20.00	8.13	8.13	0	32.63	32.63	02.02	77.3	76.2		5.73	5.65	00	3.22	3.21	0.20	4	
16/12/2013	16:41	Cloudy	Middle	3.0	19.60	19.60	19.60	8.17	8.17	8.17	32.40	32.40	32.40	77.4	79.9	79.6	5.97	5.97	6.05	3.51	3.55	3.53	3	3.50
10/12/2010	16:43	o.ouu,	Middle	3.0	19.60	19.60	.0.00	8.17	8.17	0	32.40	32.40	02.10	80.5	80.7	7 0.0	6.11	6.13	0.00	3.57	3.49	0.00	4	0.00
18/12/2013	16:15	Fine	Middle	2.5	19.10	19.10	19.10	8.21	8.21	8.21	32.56	32.56	32.56	82.2	82.6	82.4	6.30	6.35	6.33	4.88	4.87	4.84	8	6.50
10/12/2010	16:17		Middle	2.5	19.10	19.10		8.21	8.21	0.2 .	32.56	32.56	02.00	82.4	82.5	02	6.33	6.33	0.00	4.80	4.79		5	0.00
21/12/2013	10:30	Fine	Middle	2.5	18.80	18.80	18.80	8.23	8.23	8.23	32.75	32.75	32.77	79.7	79.5	79.7	7.45	7.27	7.41	4.49	4.48	4.48	4	5.00
	10:33		Middle	2.5	18.80	18.80		8.23	8.23		32.79	32.79		79.8	79.6	. 2	7.47	7.45		4.47	4.46		6	
24/12/2013	11:15	Fine	Middle	2.5	18.60	18.60	18.60	8.22	8.22	8.22	32.84	32.84	32.84	79.9	80.2	80.5	6.17	6.20	6.22	5.83	5.84	5.84	5	5.50
	11:17		Middle	2.5	18.60	18.60		8.22	8.22		32.84	32.84		80.8	80.9		6.24	6.25		5.85	5.83		6	
26/12/2013	10:41	Fine	Middle	2.5	17.80	17.80	17.70	8.20	8.20	8.20	32.76	32.76	32.77	77.4	77.2	77.1	6.06	6.05	6.05	4.15	4.14	4.13	4	4.00
20,12,2010	10:43	1 1110	Middle	2.5	17.60	17.60	17.70	8.20	8.20	0.20	32.77	32.77	02.11	77.0	76.8	,,,,	6.04	6.03	0.00	4.14	4.07	7.10	4	4.00

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P4 - SOC Mid-Flood Tide

Date	Time	Weater Condition	Samplin	<u> </u>	Wat	er Temp	erature		pH -			Salinity ppt			O Satur	ation		DO mg/L			Turbid NTU		Suspended Solids mg/L	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	alue	Average	Value	Average
28/11/2013	14:09	Fine	Middle	2.5	21.70	21.70	21.70	8.39	8.39	8.39	35.21	35.21	35.21	62.5	63.1	63.8	4.50	4.57	4.60	6.79	6.81	6.79	7	8.00
20/11/2013	14:11	TING	Middle	2.5	21.70	21.70	21.70	8.39	8.39	0.00	35.21	35.21	33.21	64.6	65.1	00.0	4.65	4.69	4.00	6.84	6.73	0.73	9	0.00
30/11/2013	16:00	Fine	Middle	2.5	21.20	21.20	21.15	8.41	8.41	8.41	35.21	35.22	35.24	61.4	60.9	61.6	4.44	4.40	4.46	4.11	4.08	4.05	4	4.00
30/11/2013	16:02	TING	Middle	2.5	21.10	21.10	21.13	8.41	8.41	0.41	35.27	35.27	33.24	62.0	62.2	01.0	4.49	4.50	4.40	4.07	3.95	4.00	4	4.00
2/12/2013	15:57	Fine	Middle	2.5	20.60	20.60	20.55	8.49	8.49	8.49	35.37	35.37	35.37	68.1	69.0	68.7	4.99	5.06	5.05	4.40	4.41	4.41	4	3.50
271272010	15:59	1 1110	Middle	2.5	20.50	20.50	20.00	8.49	8.49	0.40	35.37	35.37	00.01	68.8	68.9	00.1	5.04	5.09	0.00	4.40	4.41	7.71	3	0.00
4/12/2013	19:04	Fine	Middle	3.0	20.60	20.60	20.50	8.39	8.39	8.39	35.44	35.44	35.44	72.1	71.8	71.6	5.27	5.25	5.24	4.74	4.72	4.71	6	6.00
47 12/2010	19:06	1 1110	Middle	3.0	20.40	20.40	20.00	8.39	8.39	0.00	35.44	35.44	00.44	71.3	71.1	71.0	5.23	5.22	0.24	4.72	4.67	4.71	6	0.00
7/12/2013	10:54	Fine	Middle	2.5	20.60	20.60	20.55	8.40	8.40	8.40	35.52	35.52	35.54	68.1	68.0	67.3	4.97	4.96	4.91	4.54	4.43	4.41	5	5.50
771272010	10:56	1 1110	Middle	2.5	20.50	20.50	20.00	8.40	8.40	0.40	35.55	35.55	00.04	67.0	66.2	07.0	4.89	4.82	4.01	4.35	4.31	7.71	6	0.00
9/12/2013	11:32	Fine	Middle	2.5	20.80	20.80	20.80	8.38	8.38	8.38	35.44	35.44	35.44	71.9	72.5	72.4	5.26	5.28	5.28	4.64	4.59	4.59	6	6.00
3/12/2010	11:35	1 1110	Middle	2.5	20.80	20.80	20.00	8.38	8.38	0.00	35.44	35.44	00.44	72.3	72.8	72.4	5.27	5.31	0.20	4.53	4.58	4.00	6	0.00
11/12/2013	14:42	Fine	Middle	2.5	20.40	20.40	20.40	8.41	8.41	8.41	35.58	35.58	35.59	72.2	73.3	73.1	5.27	5.36	5.34	3.50	3.49	3.47	2	2.50
	14:44	0	Middle	2.5	20.40	20.40	20.10	8.41	8.41	0	35.59	35.59	00.00	73.6	73.3	70	5.37	5.35	0.0 .	3.44	3.45	0	3	1.00
13/12/2013	15:39	Cloudy	Middle	2.5	20.70	20.70	20.70	8.15	8.15	8.15	32.58	32.58	32.58	77.0	76.8	76.7	5.70	5.68	5.68	4.73	4.63	4.63	3	3.50
	15:41	,	Middle	2.5	20.70	20.70		8.14	8.14		32.58	32.58		76.4	76.4		5.66	5.66		4.60	4.55		4	
16/12/2013	16:34	Cloudy	Middle	3.0	19.50	19.50	19.50	8.17	8.17	8.17	32.41	32.41	32.41	80.9	80.8	80.6	6.16	6.15	6.13	4.67	4.66	4.64	4	3.50
	16:36	,	Middle	3.0	19.50	19.50		8.17	8.17		32.41	32.41		80.4	80.1		6.11	6.10		4.63	4.60		3	
18/12/2013	16:07	Fine	Middle	2.5	18.80	18.80	18.70	8.21	8.21	8.21	32.54	32.54	32.54	84.3	84.0	84.7	6.47	6.46	6.52	4.98	5.00	5.00	3	3.50
	16:09		Middle	2.5	18.40	18.80		8.21	8.21		32.54	32.54		85.2	85.3		6.56	6.57		4.99	5.02		4	<u> </u>
21/12/2013	10:21	Fine	Middle	2.5	18.70	18.70	18.70	8.23	8.23	8.23	32.77	32.77	32.77	77.1	76.9	77.0	5.93	5.10	5.72	5.39	5.40	5.41	6	5.50
	10:23		Middle	2.5	18.70	18.70		8.23	8.23		32.77	32.77		76.7	77.3		5.90	5.95		5.41	5.42		5	
24/12/2013	11:24	Fine	Middle	2.5	18.70	18.70	18.70	8.20	8.20	8.20	32.82	32.82	32.82	75.9	76.4	75.9	5.84	5.87	5.84	5.40	5.39	5.39	5	5.50
	11:26		Middle	2.5	18.70	18.70		8.20	8.20		32.82	32.82		75.5	75.6		5.83	5.81		5.37	5.41		6	<u> </u>
26/12/2013	10:31	Fine	Middle	2.5	17.90	17.90	17.80	8.20	8.20	8.20	32.73	32.73	32.73	80.3	80.0	79.8	6.29	6.28	6.26	3.63	3.58	3.57	4	4.00
	10:33		Middle	2.5	17.70	17.70		8.20	8.20		32.73	32.73		79.7	79.2		6.26	6.20		3.56	3.52		4	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P5 - WCT / RT / IT Mid-Flood Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp °C	erature	rature pl			Salinity ppt		ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspended Solids mg/L	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/11/2013	14:01	Fine	Middle	2.5	21.60	21.60	21.60	8.37	8.37	8.37	35.17	35.17	35.17	63.8	64.4	64.6	4.60	4.64	4.66	4.85	4.86	4.88	8	8.00
20/11/2013	14:03	TING	Middle	2.5	21.60	21.60	21.00	8.37	8.37	0.01	35.17	35.17	33.17	65.0	65.3	04.0	4.69	4.71	4.00	4.90	4.89	4.00	8	0.00
30/11/2013	15:56	Fine	Middle	2.5	21.10	21.10	21.00	8.42	8.42	8.42	35.09	35.09	35.10	59.7	59.0	59.8	4.33	4.36	4.35	5.21	5.18	5.16	4	4.00
30/11/2013	15:58	TING	Middle	2.5	20.90	20.90	21.00	8.42	8.42	0.42	35.10	35.10	33.10	60.1	60.2	55.0	4.35	4.37	4.55	5.15	5.10	5.10	4	4.00
2/12/2013	15:52	Fine	Middle	2.5	20.50	20.40	20.45	8.54	8.54	8.54	35.40	35.40	35.39	68.1	69.0	68.6	5.00	5.07	5.04	5.00	5.00	5.00	4	4.50
2/12/2013	15:54	TITIE	Middle	2.5	20.40	20.50	20.43	8.54	8.54	0.54	35.38	35.38	33.39	68.5	68.7	00.0	5.03	5.04	3.04	5.00	5.00	3.00	5	4.50
4/12/2013	18:53	Fine	Middle	3.0	20.40	20.40	20.25	8.39	8.39	8.39	35.40	35.40	35.36	74.3	74.1	73.9	5.69	5.68	5.67	7.08	7.01	6.99	7	7.00
4/12/2010	18:55	TING	Middle	3.0	20.10	20.10	20.23	8.39	8.39	0.00	35.32	35.32	33.30	73.8	73.5	70.5	5.66	5.64	3.07	6.94	6.92	0.55	7	7.00
7/12/2013	10:50	Fine	Middle	2.5	20.60	20.60	20.50	8.40	8.40	8.40	35.52	35.52	35.53	69.5	68.9	68.6	5.08	5.03	5.01	5.19	5.05	5.07	9	8.50
1712/2010	10:52	TITIC	Middle	2.5	20.40	20.40	20.50	8.40	8.40	0.40	35.53	35.53	33.33	68.2	67.7	00.0	4.98	4.95	3.01	5.02	5.01	3.07	8	0.50
9/12/2013	11:27	Fine	Middle	2.5	20.80	20.80	20.80	8.38	8.38	8.38	35.45	35.45	35.45	72.1	72.5	72.4	5.25	5.28	5.27	6.14	6.14	6.14	9	9.00
3/12/2013	11:29	TING	Middle	2.5	20.80	20.80	20.00	8.38	8.38	0.50	35.45	35.45	30.43	72.6	72.4	72.4	5.29	5.27	5.21	6.14	6.15	0.14	9	3.00
11/12/2013	14:35	Fine	Middle	2.5	20.40	20.40	20.40	8.42	8.42	8.42	35.54	35.61	35.60	78.3	78.5	78.0	5.74	5.76	5.72	4.55	4.56	4.55	3	2.50
11/12/2010	14:37	1 1110	Middle	2.5	20.40	20.40	20.40	8.42	8.42	0.42	35.62	35.62	00.00	77.6	77.7	70.0	5.71	5.66	0.72	4.55	4.53	4.00	2	2.00
13/12/2013	15:36	Cloudy	Middle	2.5	20.70	20.70	20.65	8.16	8.16	8.16	32.60	32.60	32.60	78.5	77.4	77.7	5.82	5.74	5.76	4.92	4.77	4.80	4	4.00
10/12/2010	15:38	o.ouu,	Middle	2.5	20.60	20.60	20.00	8.15	8.15	0.10	32.60	32.60	02.00	77.3	77.5		5.73	5.75	00	4.75	4.74		4	1.00
16/12/2013	16:30	Cloudy	Middle	3.0	19.60	19.60	19.60	8.18	8.18	8.18	32.94	32.44	32.57	80.8	80.9	81.2	6.13	6.14	6.17	6.48	6.47	6.46	4	4.00
	16:32	,	Middle	3.0	19.60	19.60		8.18	8.18		32.44	32.44		81.2	81.8		6.17	6.22		6.45	6.43		4	
18/12/2013	16:01	Fine	Middle	2.5	18.60	18.60	18.55	8.22	8.22	8.22	32.25	32.25	32.25	85.2	86.7	86.1	7.04	7.30	7.17	5.43	5.43	5.43	4	3.50
	16:03		Middle	2.5	18.50	18.50		8.22	8.22		32.25	32.25		86.4	86.2		7.18	7.16		5.41	5.43	0.10	3	
21/12/2013	10:15	Fine	Middle	2.5	18.40	18.40	18.40	8.23	8.23	8.24	32.80	32.80	32.80	80.4	79.8	80.3	6.22	6.19	6.22	5.21	5.22	5.21	5	4.50
	10:17		Middle	2.5	18.40	18.40		8.24	8.24		32.80	32.80		80.1	81.0		6.21	6.27		5.20	5.19		4	
24/12/2013	11:31	Fine	Middle	2.5	18.50	18.50	18.50	8.20	8.20	8.20	32.80	32.80	32.80	81.5	81.6	81.9	6.29	6.30	6.32	4.94	4.95	4.96	5	5.00
	11:33		Middle	2.5	18.50	18.50		8.20	8.20		32.80	32.80		82.2	82.1		6.34	6.33		4.97	4.99		5	<u> </u>
26/12/2013	10:24	Fine	Middle	2.5	17.90	17.90	17.75	8.20	8.20	8.20	32.79	32.79	32.80	79.5	79.3	79.1	6.22	6.21	6.20	5.66	5.61	5.60	5	4.50
	10:26		Middle	2.5	17.60	17.60		8.20	8.20		32.80	32.80		78.9	78.5		6.19	6.17		5.59	5.54		4	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at RW21-P789 - Sun Hung Kai Centre Mid-Flood Tide

Date	Time	Weater Condition		Sampling Depth m		er Temp °C	erature	pH -			Salin		ty	DO Saturation				DO mg/L			Turbid NTU		Suspended Solids mg/L	
			r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/11/2013	13:40	Fine	Middle	3.0	21.30	21.30	21.25	8.10	8.10	8.10	31.66	31.66	31.67	77.8	78.9	78.4	5.75	5.82	5.79	2.19	2.17	2.19	4	3.50
	13:42		Middle	3.0	21.20	21.20		8.10	8.10		31.67	31.67		78.4	78.5		5.78	5.79		2.18	2.21		3	
30/11/2013	14:25	Fine	Middle	3.5	21.10	21.10	21.00	8.15	8.15	8.15	32.21	32.21	32.22	84.5	83.8	84.3	6.24	6.19	6.23	4.09	4.09	4.09	4	4.00
00/11/2010	14:27		Middle	3.5	20.90	20.90	21.00	8.14	8.14	0.10	32.23	32.23	02.22	84.1	84.7	01.0	6.22	6.26	0.20	4.09	4.08	1.00	4	1.00
2/12/2013	14:50	Fine	Middle	3.5	21.40	21.40	21.35	8.12	8.12	8.12	32.30	32.30	32.31	88.4	88.4	87.9	6.49	6.49	6.45	3.30	3.20	3.25	3	3.00
27.12.20.10	14:52	0	Middle	3.5	21.30	21.30	21.00	8.12	8.12	0.12	32.32	32.32	02.01	87.7	87.1	01.10	6.43	6.40	00	3.21	3.29	0.20	3	0.00
4/12/2013	20:30	Fine	Middle	3.5	19.70	19.70	19.70	8.15	8.15	8.15	33.25	33.25	33.26	79.4	79.7	79.6	5.97	5.99	5.99	4.55	4.50	4.51	6	7.00
	20:31		Middle	3.5	19.70	19.70		8.16	8.15	0.10	33.27	33.27	00.20	79.6	79.8	7 0.0	5.98	6.00	0.00	4.59	4.40		8	1.00
7/12/2013	11:00	Fine	Middle	3.5	20.70	20.70	20.70	8.15	8.15	8.15	32.43	32.43	32.43	81.0	81.4	81.0	5.02	5.04	5.02	4.31	4.31	4.32	7	7.00
	11:02		Middle	3.5	20.70	20.70	20.70	8.15	8.15	0.10	32.43	32.43	02.10	80.9	80.7	01.0	5.00	5.00	0.02	4.32	4.34	2	7	
9/12/2013	11:05	Fine	Middle	3.0	21.60	21.60	21.65	8.09	8.09	8.09	32.31	32.31	32.32	81.7	82.2	82.4	5.95	5.99	6.00	4.79	4.71	4.80	8	9.00
0/12/2010	11:07	Tille	Middle	3.0	21.70	21.70	21.00	8.09	8.09	0.00	32.32	32.32	02.02	83.0	82.6	0 2 .4	6.05	6.01	0.00	4.75	4.96	4.00	10	0.00
11/12/2013	13:45	Fine	Middle	3.5	21.40	21.40	21.40	8.14	8.14	8.14	32.48	32.48	32.48	84.4	84.8	84.5	6.16	6.18	6.16	4.19	4.19	4.20	4	4.00
	13:47	0	Middle	3.5	21.40	21.40	20	8.14	8.14	0	32.48	32.48	02.10	84.6	84.3	01.0	6.17	6.14	00	4.20	4.21	20	4	1.00
13/12/2013	15:00	Cloudy	Middle	4.0	20.70	20.70	20.65	8.17	8.17	8.18	33.39	33.39	33.40	77.7	77.4	77.5	5.73	5.71	5.72	3.55	3.61	3.62	3	3.50
	15:02	,	Middle	4.0	20.60	20.60		8.18	8.18		33.40	33.40		77.3	77.6		5.70	5.73		3.66	3.65		4	
16/12/2013	15:00	Cloudy	Middle	3.5	18.30	18.30	18.30	8.26	8.26	8.26	33.38	33.38	33.38	77.0	76.8	76.5	5.95	5.93	5.90	6.41	6.42	6.43	4	3.50
	15:02	,	Middle	3.5	18.30	18.30		8.26	8.26		33.38	33.38		76.1	75.9		5.87	5.86		6.42	6.46		3	
18/12/2013	15:45	Fine	Middle	3.5	18.20	18.20	18.05	8.28	8.28	8.31	35.03	35.03	35.03	81.4	81.8	81.4	6.25	6.29	6.26	5.60	5.60	5.60	4	3.50
	15:47		Middle	3.5	17.90	17.90		8.33	8.33		35.03	35.03		81.3	81.0		6.25	6.23		5.60	5.59		3	
21/12/2013	9:55	Fine	Middle	3.5	18.40	18.40	18.40	8.51	8.51	8.51	35.84	35.84	35.84	84.7	84.6	84.5	6.44	6.43	6.43	4.70	4.72	4.74	5	5.50
	9:57		Middle	3.5	18.40	18.40		8.51	8.51		35.84	35.84		84.3	84.5		6.41	6.43		4.75	4.78		6	
24/12/2013	10:25	Fine	Middle	3.5	18.30	18.30	18.30	8.48	8.48	8.48	35.87	35.87	35.88	82.7	83.0	81.4	6.30	6.32	6.22	4.37	4.33	4.32	5	5.00
	10:27		Middle	3.5	18.30	18.30		8.48	8.48		35.89	35.89		81.0	79.0		6.17	6.10		4.29	4.29		5	
26/12/2013	9:55	Fine	Middle	3.0	18.00	18.00	17.98	8.15	8.15	8.16	33.44	33.44	33.45	73.2	73.6	74.0	5.58	5.62	5.70	4.61	4.55	4.42	5	5.00
	9:56		Middle	3.0	17.90	18.00		8.16	8.16		33.45	33.45		74.5	74.7		5.79	5.80		4.24	4.26		5	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

Date	Time	Weater Condition		Sampling Depth m		er Temp	erature	pH -			Salinity ppt			D	O Satur	ation		DO mg/L			Turbid NTU		Suspended Solids mg/L	
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average		Average
00/44/0040	13:36	Fin-	Middle	1.0	21.50	21.50	21.55	8.39	8.39	8.39	35.07	35.07	35.07	63.0	63.1	00.4	4.54	4.55	4.57	4.22	4.20	4.40	5	5.50
28/11/2013	13:38	Fine	Middle	1.0	21.60	21.60	21.55	8.39	8.39	0.39	35.07	35.07	35.07	63.7	63.8	63.4	4.59	4.60	4.57	4.18	4.14	4.19	6	5.50
30/11/2013	15:24	- Fine	Middle	1.5	21.10	21.10	21.05	8.41	8.41	8.42	35.26	35.26	35,29	60.0	60.3	60.3	4.35	4.37	4.37	5.66	5.79	5.77	27	27.50
30/11/2013	15:26	Tille	Middle	1.5	21.00	21.00	21.03	8.42	8.42	0.42	35.32	35.32	33.29	60.5	60.2	00.5	4.39	4.36	4.57	5.80	5.82	5.77	28	21.30
2/12/2013	15:16	Fine	Middle	1.5	21.20	21.20	21.20	8.94	8.93	8.93	34.44	34.44	34.44	64.7	64.5	64.0	4.71	4.69	4.66	4.15	4.17	4.17	2	2.00
2/12/2010	15:18	1 1110	Middle	1.5	21.20	21.20	21.20	8.93	8.92	0.00	34.44	34.44	04.44	63.7	63.1	04.0	4.64	4.59	4.00	4.19	4.18	4.17	2	2.00
4/12/2013	18:20	Fine	Middle	2.0	20.60	20.60	20.50	8.39	8.39	8.39	35.39	35.39	35.39	71.4	71.0	70.9	5.22	5.20	5.19	4.69	4.75	4.71	5	5.50
471272010	18:22	1 1110	Middle	2.0	20.40	20.40	20.00	8.39	8.39	0.00	35.39	35.39	00.00	70.7	70.4	70.0	5.18	5.16	0.10	4.78	4.63	4.71	6	0.00
7/12/2013	10:12	Fine	Middle	1.5	20.80	20.80	20.75	8.40	8.40	8.40	35.29	35.29	35.30	69.5	68.4	68.6	5.07	4.99	5.00	4.01	4.00	3.99	8	8.50
	10:14		Middle	1.5	20.70	20.70	200	8.39	8.39	0.10	35.30	35.30	00.00	68.5	67.9	00.0	4.99	4.95	0.00	3.98	3.96	0.00	9	0.00
9/12/2013	10:50	Fine	Middle	1.5	20.80	20.80	20.80	8.42	8.42	8.42	35.37	35.36	35.37	66.0	67.2	66.7	4.81	4.90	4.86	5.70	5.69	5.74	16	11.50
07.12.20.10	10:52		Middle	1.5	20.80	20.80	20.00	8.42	8.42	0.12	35.37	35.36	00.07	66.7	66.9	00.1	4.86	4.88		5.72	5.86	o	7	11.00
11/12/2013	13:52	Fine	Middle	1.5	20.70	20.70	20.70	8.56	8.56	8.56	35.51	35.51	35.51	71.2	71.3	71.0	5.20	5.20	5.17	5.24	5.26	5.24	2	2.00
	13:54		Middle	1.5	20.70	20.70		8.56	8.56		35.51	35.51		70.5	70.8		5.12	5.17		5.25	5.22		2	
13/12/2013	15:02	Cloudy	Middle	1.5	21.00	21.00	21.00	8.44	8.44	8.42	32.60	32.60	32.61	73.9	74.7	73.9	5.45	5.50	5.44	6.35	6.27	6.28	14	13.50
	15:04	,	Middle	1.5	21.00	21.00		8.40	8.40		32.61	32.61		73.8	73.1		5.43	5.38		6.32	6.18		13	
16/12/2013	15:57	Cloudy	Middle	2.0	19.50	19.50	19.50	8.19	8.19	8.19	32.32	32.32	32.32	82.1	82.8	82.7	6.24	6.30	6.31	5.46	5.48	5.46	7	6.50
	15:59		Middle	2.0	19.50	19.50		8.19	8.19		32.32	32.32		82.9	83.1		6.31	6.37		5.45	5.44		6	
18/12/2013	15:31	Fine	Middle	1.5	19.50	19.50	19.50	8.31	8.31	8.31	32.26	32.26	32.26	84.1	84.2	84.2	6.42	6.44	6.44	6.93	6.92	6.90	14	14.00
	15:33		Middle	1.5	19.50	19.50		8.31	8.31		32.26	32.26		84.5	84.1		6.45	6.43		6.89	6.87		14	
21/12/2013	9:44	Fine	Middle	1.0	18.80	18.80	18.80	8.29	8.29	8.29	32.66	32.66	32.66	78.5	78.7	79.2	6.03	6.05	6.09	5.45	5.44	5.45	9	9.00
	9:46		Middle	1.0	18.80	18.80		8.29	8.29		32.66	32.66		79.6	79.9		6.13	6.14		5.46	5.45		9	<u> </u>
24/12/2013	11:55	Fine	Middle	1.5	18.70	18.70	18.70	8.21	8.21	8.21	32.64	32.64	32.64	74.0	74.2	74.9	5.70	5.72	5.78	6.73	6.78	6.79	13	13.00
	11:57		Middle	1.5	18.70	18.70		8.21	8.21		32.64	32.64		75.6	75.9		5.83	5.85		6.81	6.83		13	
26/12/2013	9:53	Fine	Middle	2.0	17.80	17.80	17.70	8.18	8.18	8.18	32.15	32.15	32.16	75.0	74.6	74.4	5.90	5.88	5.87	3.26	3.27	3.23	5	5.50
	9:55		Middle	2.0	17.60	17.60		8.18	8.18		32.17	32.17		74.2	73.9		5.86	5.83		3.23	3.15		6	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		рН			Salini ppt	-,	D	O Satur	ation		DO ma/L			Turbid NTU		Suspend	led Solids
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	lue	Average		Average
20/44/2042	12:45	Fine	Middle	3.0	20.90	20.90	20.00	8.12	8.12	0.40	31.92	31.92	24.02	71.4	71.5	74.0	5.29	5.29	F 22	5.40	5.56	F F0	6	6.50
28/11/2013	12:47	Fine	Middle	3.0	20.90	20.90	20.90	8.12	8.12	8.12	31.92	31.92	31.92	72.0	72.2	71.8	5.34	5.35	5.32	5.68	5.69	5.58	7	6.50
30/11/2013	14:00	Fine	Middle	3.0	21.30	21.30	21.30	8.15	8.15	8.15	32.40	32.40	32.40	90.3	90.1	90.1	6.63	6.62	6.62	6.00	5.99	6.15	16	16.50
30/11/2013	14:02	TINC	Middle	3.0	21.30	21.30	21.50	8.14	8.14	0.10	32.40	32.40	32.40	90.0	89.9	30.1	6.61	6.60	0.02	6.20	6.41	0.15	17	10.30
2/12/2013	14:30	Fine	Middle	3.0	21.10	21.10	21.10	8.12	8.12	8.11	32.40	32.40	32.41	81.6	81.6	81.9	6.00	6.00	6.01	6.70	6.71	6.71	10	9.50
271272010	14:32	1 1110	Middle	3.0	21.10	21.10	21.10	8.10	8.10	0.11	32.41	32.41	02.41	82.2	82.2	01.0	6.02	6.03	0.01	6.71	6.71	0.71	9	0.00
4/12/2013	21:05	Fine	Middle	2.0	20.20	20.20	20.15	8.26	8.26	8.26	33.24	33.24	33.26	75.8	75.7	75.3	5.66	5.65	5.62	4.18	4.69	4.51	4	4.00
	21:06	0	Middle	2.0	20.10	20.10	20.10	8.25	8.25	0.20	33.27	33.27	00.20	75.1	74.6	7 0.0	5.60	5.56	0.02	4.65	4.51		4	
7/12/2013	10:35	Fine	Middle	3.0	20.50	20.50	20.50	8.16	8.16	8.16	32.43	32.43	32.44	84.1	84.0	84.6	6.26	6.25	6.29	20.78	20.83	20.87	14	13.50
	10:37		Middle	3.0	20.50	20.50		8.15	8.15		32.44	32.44		85.2	84.9		6.35	6.29		20.95	20.91		13	
9/12/2013	10:40	Fine	Middle	3.5	21.60	21.60	21.65	8.10	8.10	8.10	32.33	32.33	32.33	74.1	78.9	78.1	5.48	5.79	6.22	8.73	8.72	<u>8.73</u>	19	<u>19.50</u>
	10:42		Middle	3.5	21.70	21.70		8.10	8.10		32.32	32.32		79.9	79.3		5.82	7.78		8.72	8.73		20	
11/12/2013	11:50	Fine	Middle	3.0	20.60	20.60	20.60	8.10	8.10	8.10	32.45	32.45	32.45	84.9	84.9	84.2	6.30	6.30	6.25	4.37	4.23	4.23	3	3.50
	11:52		Middle	3.0	20.60	20.60		8.10	8.10		32.45	32.45		83.6	83.4		6.21	6.19		4.20	4.10		4	
13/12/2013	14:32	Cloudy	Middle	3.0	20.50	20.50	20.55	8.20	8.20	8.20	33.24	33.24	33.10	82.7	82.9	81.2	6.14	6.13	6.00	4.75	4.76	4.60	5	5.00
	14:34	Í	Middle	3.0	20.60	20.60		8.20	8.20		33.46	32.46		80.0	79.0		5.91	5.83		4.45	4.43		5	
16/12/2013	14:30	Cloudy	Middle	3.0	17.60	17.60	17.60	8.30	8.23	8.25	32.15	32.15	32.71	77.7	77.5	77.5	6.11	6.08	6.10	11.84	11.80	11.73	9	8.00
	14:32	Í	Middle	3.0	17.60	17.60		8.23	8.23		33.27	33.27		77.6	77.3		6.12	6.08		11.70	11.58		7	
18/12/2013	15:20	Fine	Middle	3.5	18.00	18.00	17.90	8.13	8.13	8.17	35.64	35.64	35.65	83.9	85.0	84.6	6.43	6.62	6.51	12.59	12.76	12.79	14	23.50
	15:22		Middle	3.5	17.80	17.80		8.20	8.20		35.66	35.66		84.9	84.7		6.51	6.49		12.88	12.92		33	
21/12/2013	9:30	Fine	Middle	3.5	18.20	18.20	18.20	8.52	8.52	8.52	35.90	35.90	35.90	86.6	85.4	85.8	6.53	6.51	6.52	4.96	4.84	4.85	6	8.50
	9:32		Middle	3.5	18.20	18.20		8.52	8.52		35.90	35.90		85.6	85.5		6.52	6.51		4.80	4.79		11	
24/12/2013	10:00	Fine	Middle	3.5	17.50	17.50	17.50	8.50	8.50	8.50	35.98	35.98	35.98	83.2	84.4	84.0	6.42	6.51	6.48	6.09	6.07	6.07	8	8.00
	10:02		Middle	3.5	17.50	17.50		8.50	8.50		35.98	35.98		84.6	83.9		6.53	6.47		6.06	6.05		8	
26/12/2013	10:53	Fine	Middle	1.5	17.90	17.90	17.85	8.21	8.21	8.21	33.69	33.69	33.69	77.7	78.2	78.1	6.03	6.08	6.07	5.96	5.77	5.61	6	7.00
	10:54		Middle	1.5	17.80	17.80		8.21	8.21		33.68	33.68		78.4	78.1		6.09	6.07		5.30	5.40		8	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at WSD9 - Tai Wan Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salini	ty	С	OO Satur	ation		DO mg/L			Turbidi NTU		Suspende	
			n	n	Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va		Average	Va	lue	Average		Average
28/11/2013	7:15	Cloudy	Middle	2.5	19.60	19.60	19.60	8.68	8.68	8.68	32.46	32.46	32.46	90.1	90.2	90.1	6.83	6.85	6.83	3.22	3.23	3.26	6	6.50
	7:17		Middle	2.5	19.60	19.60		8.68	8.68		32.46	32.46		90.1	89.9		6.83	6.80		3.29	3.29		7	
30/11/2013	8:15	Fine	Middle	3.0	17.90	17.90	17.90	8.25	8.25	8.25	32.60	32.60	32.61	91.4	92.1	92.0	7.14	7.19	7.18	4.00	4.02	4.03	4	4.00
5671772616	8:17	0	Middle	3.0	17.90	17.90		8.25	8.25	0.20	32.61	32.61	02.01	92.6	91.9	02.0	7.20	7.19		4.04	4.04		4	1.00
2/12/2013	23:20	Fine	Middle	2.0	19.60	19.60	19.60	8.23	8.23	8.23	33.27	33.27	33.27	86.7	87.2	86.5	6.63	6.57	6.53	1.97	1.78	1.82	3	3.00
27.220.0	23:21		Middle	2.0	19.60	19.60	10.00	8.23	8.23	0.20	33.27	33.27	00.21	86.4	85.5		6.48	6.44	0.00	1.80	1.74		3	0.00
4/12/2013	11:35	Fine	Middle	3.0	20.50	20.50	20.50	8.20	8.20	8.20	32.54	32.54	32.54	89.5	89.9	90.9	6.67	6.70	6.78	4.27	4.29	4.29	5	4.50
	11:37		Middle	3.0	20.50	20.50	20.00	8.20	8.20	5.25	32.54	32.54	02.0 :	91.6	92.7		6.83	6.92	0.70	4.30	4.30	20	4	1.00
7/12/2013	2:25	Fine	Middle	2.5	19.00	19.00	19.00	8.18	8.18	8.19	33.36	33.36	33.36	80.1	81.4	80.9	6.10	6.19	6.15	1.86	1.75	1.74	5	5.00
77122010	2:26	0	Middle	2.5	19.00	19.00	10.00	8.20	8.20	0.10	33.36	33.36	00.00	81.1	80.8		6.17	6.15	0.10	1.68	1.65		5	0.00
9/12/2013	3:52	Fine	Middle	2.0	21.40	21.40	21.40	8.21	8.21	8.21	33.34	33.34	33.34	84.2	84.7	84.5	6.13	6.16	6.15	1.64	1.54	1.62	16	16.50
0/12/2010	3:53	Tine	Middle	2.0	21.40	21.40	21.40	8.21	8.21	0.21	33.34	33.34	00.04	84.4	84.6	04.0	6.14	6.15	0.10	1.70	1.60	1.02	17	10.00
11/12/2013	19:40	Cloudy	Middle	2.5	20.30	20.30	20.30	8.26	8.26	8.27	33.75	33.75	33.75	87.2	86.9	87.7	6.47	6.44	6.51	3.13	2.79	2.91	4	3.00
22010	19:41		Middle	2.5	20.30	20.30	20.00	8.27	8.27	0.27	33.74	33.74	00.10	88.4	88.2	· · · · · · · · · · · · · · · · · · ·	6.58	6.54	0.01	2.84	2.87	2.01	2	0.00
13/12/2013	21:50	Cloudy	Middle	2.0	20.50	20.50	20.50	8.24	8.24	8.24	33.62	33.62	33.63	79.9	80.0	81.2	5.90	5.91	6.00	2.55	2.43	2.43	3	2.50
16/12/2010	21:51		Middle	2.0	20.50	20.50	20.00	8.24	8.24	0.21	33.63	33.63	00.00	82.1	82.6	02	6.07	6.10	0.00	2.40	2.33	20	2	2.00
17/12/2013	23:50	Cloudy	Middle	2.0	17.20	17.20	17.20	8.33	8.33	8.33	33.11	33.55	33.45	85.4	86.4	85.8	6.73	6.88	6.79	3.00	2.98	3.00	4	3.50
22010	23:51		Middle	2.0	17.20	17.20	20	8.33	8.33	0.00	33.56	33.59	00.10	85.6	85.8		6.77	6.76	0.70	3.02	3.01	0.00	3	0.00
19/12/2013	0:46	Fine	Middle	2.0	14.30	14.30	14.30	8.34	8.34	8.34	33.39	33.39	33.38	85.2	86.3	86.0	7.12	7.20	7.23	2.73	2.82	2.74	4	4.00
16/12/2010	0:47	0	Middle	2.0	14.30	14.30		8.34	8.34	0.01	33.36	33.36	00.00	86.3	86.0		7.30	7.29	1.20	2.70	2.71		4	1.00
21/12/2013	1:23	Fine	Middle	2.5	17.50	17.50	17.50	8.31	8.31	8.31	33.84	33.87	33.87	90.9	91.8	91.5	7.10	7.16	7.14	5.07	4.94	4.96	9	10.00
2225.0	1:24		Middle	2.5	17.50	17.50		8.31	8.31	5.5.	33.88	33.88	00.01	91.7	91.5		7.16	7.14		4.98	4.83		11	
24/12/2013	2:18	Fine	Middle	2.0	16.40	16.40	16.40	8.29	8.29	8.29	33.81	33.81	33.79	89.1	89.7	89.9	7.11	7.17	7.18	2.40	2.50	2.43	8	7.50
	2:19		Middle	2.0	16.40	16.40		8.29	8.29		33.74	33.79		90.2	90.5		7.20	7.22	****	2.38	2.42		7	
26/12/2013	3:38	Fine	Middle	2.0	16.20	16.20	16.20	8.32	8.32	8.33	33.81	33.81	33.60	89.1	89.2	89.8	7.14	7.14	7.19	2.28	2.24	2.19	3	3.50
257.22010	3:39		Middle	2.0	16.20	16.20		8.33	8.33	3.50	33.64	33.13	33.00	90.2	90.6		7.22	7.25	0	2.22	2.00		4	0.00

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at WSD17 - Quarry Bay Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salini	ty	С	OO Satur %	ation		DO mg/L			Turbid NTU		Suspende	
			[n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/11/2013	8:40	Cloudy	Middle	3	20.20	20.20	20.15	8.17	8.17	8.17	32.08	32.08	32.09	90.8	91.2	90.7	6.82	6.85	6.82	3.13	3.13	3.14	5	5.00
	8:42		Middle	3	20.10	20.10		8.17	8.17		32.10	32.10		90.3	90.6		6.78	6.82		3.14	3.16		5	<u> </u>
30/11/2013	9:50	Fine	Middle	3	19.90	19.90	19.85	8.23	8.23	8.23	32.06	32.06	32.07	87.7	88.1	87.4	6.62	6.65	6.60	5.41	5.41	5.40	4	4.50
	9:52		Middle	3	19.80	19.80		8.22	8.22		32.07	32.07		86.7	86.9		6.56	6.56		5.40	5.36		5	
2/12/2013	2:30	Fine	Middle	3	19.80	19.80	19.80	8.19	8.19	8.19	33.16	33.16	33.16	75.8	75.6	75.7	5.69	5.68	5.68	3.68	3.73	3.68	4	4.00
	2:31		Middle	3	19.80	19.80		8.19	8.19		33.16	33.16		75.6	75.6		5.67	5.68		3.71	3.60		4	
4/12/2013	15:10	Fine	Middle	3	20.80	20.80	20.85	8.15	8.15	8.15	32.49	32.49	32.49	87.5	87.7	87.1	6.47	6.48	6.44	4.90	4.79	4.82	6	6.00
	15:12		Middle	3	20.90	20.90		8.15	8.15		32.49	32.49		87.2	86.1		6.44	6.35		4.79	4.79		6	
7/12/2013	4:35	Fine	Middle	3	18.90	18.90	18.90	8.25	8.25	8.25	32.91	32.91	32.91	76.4	77.6	77.8	5.84	5.93	5.95	3.49	3.58	3.55	6	6.50
	4:36 5:15		Middle Middle	3	18.90	18.90		8.25 8.19	8.25 8.19		32.91	32.91		78.8 75.7	78.3 76.3		6.02 5.54	5.99 5.52		3.66 2.19	3.47 2.21		7 18	
9/12/2013	5:16	Fine	Middle	3	21.10	21.10	21.10	8.19	8.19	8.19	33.33	33.33	33.23	77.2	77.0	76.6	5.55	5.54	5.54	2.19	2.30	2.23	5	11.50
	20:32		Middle	3	20.20	20.20		8.28	8.28		33.48	33.49		80.4	81.0		5.98	6.02		3.83	3.75		3	
11/12/2013	20:33	Cloudy	Middle	3	20.20	20.20	20.20	8.28	8.28	8.28	33.49	33.49	33.49	81.4	81.0	81.0	6.06	6.02	6.02	3.71	3.72	3.75	4	3.50
	23:50		Middle	3	20.30	20.30		8.22	8.22		33.50	33.50		77.7	78.1		5.77	5.79		2.93	2.77		5	
13/12/2013	23:51	Cloudy	Middle	3	20.30	20.30	20.30	8.22	8.22	8.22	33.50	33.50	33.50	78.0	77.5	77.8	5.79	5.73	5.77	2.61	2.66	2.74	4	4.50
	2:25		Middle	3	17.50	17.50		8.33	8.33		33.46	33.46		82.4	82.7		6.46	6.46		3.89	3.75		4	
17/12/2013	2:26	Cloudy	Middle	3	17.40	17.40	17.45	8.33	8.33	8.33	33.42	33.42	33.44	82.3	82.1	82.4	6.45	6.44	6.45	3.87	3.80	3.83	4	4.00
1011010015	3:49		Middle	3	15.70	15.70		8.33	8.33		32.37	32.37		76.2	76.6		6.21	6.23		3.83	3.85		5	
19/12/2013	3:50	Fine	Middle	3	15.70	15.70	15.70	8.33	8.33	8.33	32.38	32.38	32.38	77.2	76.8	76.7	6.29	6.28	6.25	3.69	3.72	3.77	4	4.50
24/42/2042	3:47	Fine	Middle	3	17.50	17.50	17.50	8.18	8.18	0.40	32.53	32.36	20.54	77.0	76.7	76.7	6.06	6.03	6.02	5.75	5.51	F 40	7	6.00
21/12/2013	3:48	Fine	Middle	3	17.50	17.50	17.50	8.19	8.19	8.19	32.57	32.58	32.51	75.8	77.1	76.7	5.96	6.07	6.03	5.31	5.34	5.48	5	6.00
24/12/2013	3:48	Fine	Middle	3	16.70	16.70	16.70	8.32	8.32	8.32	33.78	33.78	33.79	80.1	80.6	80.2	6.35	6.39	6.36	3.13	3.18	3.21	3	3.50
24/12/2013	3:49	1 1116	Middle	3	16.70	16.70	10.70	8.32	8.32	0.52	33.79	33.79	33.13	80.2	80.0	00.2	6.36	6.33	0.50	3.25	3.29	J.Z I	4	3.30
26/12/2013	6:35	Fine	Middle	3	16.50	16.50	16.45	8.32	8.32	8.32	33.73	33.77	33.74	81.1	81.0	81.1	6.47	6.46	6.47	2.83	2.78	2.76	6	6.00
20/12/2013	6:36	Tille	Middle	3	16.40	16.40	10.73	8.31	8.31	0.02	33.71	33.73	30.74	81.1	81.0	01.1	6.47	6.46	0.77	2.71	2.73	2.10	6	0.00

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at C7 - Windsor House Mid-Ebb Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp	erature		pH			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
28/11/2013	10:30	Cloudy	Middle	2	20.30	20.30	20.25	7.94	7.94	7.94	30.40	30.40	30.40	69.9	70.1	69.7	5.29	5.30	5.27	2.93	2.93	2.93	9	8.50
20/11/2013	10:32	Oloudy	Middle	2	20.20	20.20	20.23	7.93	7.93	7.54	30.40	30.40	30.40	69.3	69.3	03.7	5.24	5.24	5.21	2.93	2.94	2.00	8	0.50
30/11/2013	11:22	Fine	Middle	2	20.80	20.80	20.75	8.06	8.06	8.05	31.68	31.68	31.68	62.3	61.1	61.6	4.64	4.59	4.61	1.61	1.57	1.57	6	6.00
30/11/2013	11:24	Tille	Middle	2	20.70	20.70	20.73	8.04	8.04	0.00	31.68	31.68	31.00	61.1	62.0	01.0	4.59	4.61	4.01	1.54	1.55	1.07	6	0.00
2/12/2013	1:50	Fine	Middle	1	19.40	19.40	19.40	7.96	7.96	7.96	31.15	31.15	31.16	51.8	51.9	51.5	3.97	3.97	3.94	2.37	2.32	2.35	3	3.00
271272010	1:51	Tille	Middle	1	19.40	19.40	10.40	7.96	7.96	7.00	31.16	31.16	01.10	50.9	51.5	01.0	3.89	3.94	0.04	2.42	2.27	2.00	3	0.00
4/12/2013	14:52	Fine	Middle	2	21.60	21.60	21.75	8.09	8.09	8.09	31.62	31.62	31.62	71.2	71.5	71.4	5.20	5.24	5.22	5.24	5.22	5.22	7	6.00
47 12/2010	14:54	T IIIC	Middle	2	21.90	21.90	21.70	8.08	8.08	0.00	31.61	31.61	01.02	71.6	71.2	71	5.24	5.20	0.22	5.21	5.21	0.22	5	0.00
7/12/2013	4:03	Fine	Middle	1	19.30	19.30	19.25	8.20	8.20	8.19	31.86	31.86	31.86	69.8	69.8	70.5	5.36	5.34	5.25	1.61	1.58	1.62	3	3.50
771272010	4:04	1 1110	Middle	1	19.20	19.20	10.20	8.18	8.18	0.10	31.86	31.86	01.00	71.1	71.2	70.0	5.14	5.15	0.20	1.64	1.65	1.02	4	0.00
9/12/2013	4:48	Fine	Middle	1	21.00	21.00	21.00	8.17	8.17	8.17	30.58	30.58	30.58	57.4	57.3	57.4	4.27	4.31	4.29	1.56	1.41	1.37	4	4.50
0/12/2010	4:49	Tille	Middle	1	21.00	21.00	21.00	8.17	8.16	0.17	30.58	30.58	00.00	57.7	57.3	07.4	4.30	4.26	4.20	1.26	1.23	1.07	5	4.00
11/12/2013	20:05	Cloudy	Middle	2	20.10	20.10	20.10	8.12	8.13	8.12	32.16	32.21	32.20	61.5	61.9	61.9	4.51	4.56	4.55	3.19	3.25	3.24	<2	<2
	20:06	o.ouu,	Middle	2	20.10	20.10	20.10	8.12	8.12	0.12	32.21	32.21	02.20	62.0	62.0	01.0	4.56	4.56		3.22	3.28	0.2 .	<2	
13/12/2013	23:20	Cloudy	Middle	1	20.40	20.40	20.40	8.26	8.26	8.24	31.69	31.69	31.69	68.7	69.2	69.0	5.15	5.18	5.16	2.01	2.13	2.00	<2	<2
	23:21		Middle	1	20.40	20.40		8.22	8.22		31.69	31.69		69.3	68.6		5.19	5.13		1.91	1.94		<2	
17/12/2013	1:58	Cloudy	Middle	1	16.90	16.90	16.90	8.20	8.20	8.20	26.48	26.48	26.48	48.2	49.0	48.9	3.97	4.04	4.03	3.45	3.47	3.41	<2	<2
	1:59		Middle	1	16.90	16.90		8.19	8.20		26.48	26.48		49.1	49.1		4.05	4.05		3.40	3.31		<2	
19/12/2013	3:22	Fine	Middle	1	15.00	15.00	14.98	8.15	8.15	8.15	28.30	28.30	28.51	51.7	52.0	52.0	4.36	4.41	4.40	2.88	2.92	2.95	9	7.00
	3:23		Middle	1	14.90	15.00		8.15	8.15		28.74	28.71		52.1	52.2		4.41	4.41		3.00	2.98		5	
21/12/2013	3:11	Fine	Middle	1	16.90	16.90	16.90	8.11	8.11	8.11	29.50	29.50	29.50	50.3	50.4	50.4	4.08	4.08	4.09	2.84	2.87	2.86	3	4.00
	3:12		Middle	1	16.90	16.90		8.10	8.10		29.50	29.50		50.4	50.5		4.09	4.09		2.88	2.83		5	
24/12/2013	3:15	Fine	Middle	1	16.50	16.50	16.50	8.14	8.14	8.14	31.37	31.37	31.38	60.6	61.0	61.3	4.00	4.06	4.50	2.06	2.03	2.02	3	2.50
	3:16	-	Middle	1	16.50	16.50		8.14	8.14		31.39	31.39		61.9	61.7		4.99	4.96		2.00	1.98		2	
26/12/2013	5:45	Fine	Middle	1	15.90	15.90	15.90	8.13	8.13	8.13	30.92	30.92	30.92	49.0	49.3	49.2	4.02	4.04	4.04	1.41	1.45	1.47	<2	<2
20.12.20.10	5:46	0	Middle	1	15.90	15.90		8.12	8.12	00	30.92	30.92	00.02	49.3	49.3		4.04	4.04		1.48	1.52		<2	_

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at C1 - HKCEC Mid-Ebb Tide

Date	Time	Weater	Samplin	g Depth	Wat	er Temp	erature		рН			Salini	ty	D	O Satur	ation		DO ma/l			Turbid NTU		Suspend	
		Condition	n	n	Va	"C lue	Average	Va	lue	Average	Va	ppt llue	Average	Va	% alue	Average	Va	mg/L lue	Average	Va	alue	Average	Value	Average
	10:15		Middle	2.5	21.40	21.40		8.35	8.35		35.26	35.26		65.6	65.5	J	4.73	4.73	J	4.41	4.40		6	
28/11/2013	10:17	Cloudy	Middle	2.5	21.30	21.30	21.35	8.35	8.36	8.35	35.26	35.26	35.26	65.0	65.2	65.3	4.70	4.72	4.72	4.40	4.40	4.40	4	5.00
30/11/2013	10:46	Fine	Middle	2.5	21.10	21.10	21.00	8.43	8.43	8.44	35.23	35.23	35,23	60.7	62.1	62.2	4.39	4.46	4.49	4.98	4.99	4.99	5	5.00
30/11/2013	10:48	Tille	Middle	2.5	20.90	20.90	21.00	8.44	8.44	0.44	35.22	35.22	33.23	62.6	63.3	02.2	4.53	4.59	4.40	4.98	5.00	4.55	5	3.00
2/12/2013	23:55	Fine	Middle	2.5	20.60	20.60	20.50	8.42	8.42	8.42	35.44	35.44	35.45	61.0	60.7	60.6	4.46	4.44	4.44	3.64	3.74	3.70	4	4.00
27.22.010	23:57		Middle	2.5	20.40	20.40	20.00	8.41	8.41	0.12	35.45	35.45	00.10	60.5	60.1	00.0	4.43	4.41		3.75	3.65	00	4	1.00
4/12/2013	14:18	Fine	Middle	2.5	20.80	20.80	20.80	8.23	8.24	8.24	35.53	35.53	35.53	74.2	75.0	74.9	5.40	5.46	5.45	4.75	4.76	4.76	5	6.00
	14:20		Middle	2.5	20.80	20.80		8.23	8.24		35.53	35.53		75.3	75.1		5.47	5.47		4.75	4.76		7	
7/12/2013	2:46	Fine	Middle	2.5	20.30	20.30	20.30	8.36	8.36	8.36	35.58	35.58	35.58	71.6	71.8	71.6	5.25	5.27	5.25	3.37	3.39	3.39	8	8.50
	2:48		Middle	2.5	20.30	20.30		8.36	8.36		35.58	35.58		71.4	71.4		5.24	5.24		3.40	3.41		9	
9/12/2013	6:52	Fine	Middle	2.5	20.70	20.70	20.70	8.35	8.35	8.35	35.48	35.48	35.48	73.8	74.0	74.0	5.37	5.39	5.39	4.87	4.87	4.87	7	8.00
	6:54		Middle	2.5	20.70	20.70		8.35	8.35		35.48	35.48		74.4	73.6		5.42	5.36		4.87	4.87		9	
11/12/2013	18:35	Cloudy	Middle	2.0	20.40	20.40	20.30	8.11	8.11	8.10	32.53	32.53	32.55	71.4	70.5	70.9	5.34	5.26	5.29	5.01	5.00	4.99	4	3.50
	18:37		Middle	2.0	20.20	20.20		8.09	8.09		32.56	32.56		70.6	70.9		5.27	5.30		4.98	4.98		3	
13/12/2013	22:17	Cloudy	Middle	2.5	20.50	20.50	20.45	8.12	8.12	8.12	32.63	32.63	32.63	74.1	75.0	74.6	5.52	5.59	5.56	3.64	3.65	3.65	4	5.00
	22:19		Middle	2.5	20.40	20.40		8.12	8.12		32.63	32.63		74.8	74.4		5.57	5.54		3.65	3.64		6	
17/12/2013	0:21	Cloudy	Middle	2.5	19.20	19.30	19.25	8.12	8.13	8.13	32.61	32.62	32.62	75.5	78.6	78.0	5.76	6.03	5.97	4.30	4.29	4.30	4	5.00
	0:23		Middle	2.5	19.30	19.20		8.13	8.12		32.61	32.62		79.9	77.8		6.11	5.98		4.30	4.29		6	
19/12/2013	1:04	Fine	Middle	3.0	17.90	17.90	17.65	8.23	8.23	8.22	32.75	32.75	32.75	70.7	70.3	70.2	5.53	5.51	5.50	3.31	3.32	3.28	9	7.50
	1:06		Middle	3.0	17.40	17.40		8.21	8.21		32.74	32.74		70.0	69.8		5.48	5.47		3.25	3.24		6	
21/12/2013	2:22	Fine	Middle	3.0	18.50	18.50	18.45	8.21	8.21	8.20	32.87	32.87	32.87	70.3	70.1	69.9	5.43	5.42	5.41	2.44	2.43	2.41	2	2.50
	2:24		Middle	3.0	18.40	18.40		8.19	8.19		32.86	32.86		69.7	69.6		5.40	5.40		2.40	2.35		3	
24/12/2013	3:58	Fine	Middle	3.0	17.60	17.60	17.55	8.16	8.16	8.15	32.89	32.89	32.89	63.0	62.7	62.7	4.95	4.93	4.93	6.14	6.11	6.08	7	7.50
	4:00		Middle	3.0	17.50	17.50		8.14	8.14		32.89	32.89		62.6	62.4		4.93	4.92		6.05	6.02		8	
26/12/2013	5:15	Fine	Middle	3.0	17.20	17.20	17.15	8.16	8.16	8.15	32.80	32.80	32.80	65.8	65.6	65.5	5.21	5.20	5.19	4.02	3.98	3.96	3	3.50
	5:17		Middle	3.0	17.10	17.10		8.14	8.14		32.79	32.79		65.3	65.1		5.18	5.17		3.94	3.89		4	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P1 - HKCEC Phase I Mid-Ebb Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbidi NTU		Suspende	
		Ooridition	n	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	llue	Average	Value	Average
28/11/2013	10:57	Cloudy	Middle	2.5	20.80	20.80	20.80	8.37	8.37	8.37	35.31	35.31	35.31	67.0	68.1	67.9	4.88	4.96	4.94	3.94	3.94	3.94	6	6.50
20/11/2013	10:59	Cloudy	Middle	2.5	20.80	20.80	20.00	8.37	8.37	0.57	35.31	35.31	00.01	68.2	68.1	07.5	4.97	4.96	4.54	3.94	3.94	0.54	7	0.50
30/11/2013	11:25	Fine	Middle	2.5	21.10	21.10	21.00	8.42	8.42	8.43	35.13	35.13	35.22	68.4	68.3	67.9	4.96	4.95	4.93	6.01	5.93	5.94	6	5.00
30/11/2013	11:27	Tille	Middle	2.5	20.90	20.90	21.00	8.43	8.43	0.40	35.31	35.31	00.22	67.6	67.3	07.5	4.91	4.89	4.55	5.91	5.90	0.04	4	3.00
2/12/2013	0:42	Fine	Middle	2.5	20.50	20.50	20.40	8.44	8.44	8.44	35.43	35.43	35.44	72.9	72.3	72.1	5.34	5.30	5.29	5.56	5.55	5.62	6	5.00
27 127 20 10	0:44	Tille	Middle	2.5	20.30	20.30	20.40	8.44	8.44	0.44	35.44	35.44	55.44	71.8	71.5	72.1	5.27	5.25	5.25	5.69	5.66	5.02	4	3.00
4/12/2013	14:54	Fine	Middle	2.5	21.00	21.00	21.00	8.36	8.36	8.36	35.52	35.52	35.52	80.9	81.0	80.9	5.87	5.79	5.86	5.49	5.45	5.46	4	4.00
47 12/2010	14:56	Tine	Middle	2.5	21.00	21.00	21.00	8.36	8.36	0.00	35.52	35.52	00.02	80.6	81.2		5.86	5.90	0.00	5.45	5.44	0.40	4	4.00
7/12/2013	3:20	Fine	Middle	2.5	20.40	20.30	20.35	8.41	8.41	8.41	35.55	35.55	35.55	79.3	79.2	79.0	5.82	5.82	5.80	3.74	3.72	3.73	9	9.00
	3:22	0	Middle	2.5	20.40	20.30	20.00	8.41	8.41	0.11	35.55	35.55	00.00	78.8	78.6		5.79	5.78	0.00	3.72	3.72	00	9	0.00
9/12/2013	7:27	Fine	Middle	2.5	20.60	20.60	20.60	8.36	8.36	8.37	35.23	35.24	35.24	72.2	73.0	74.8	5.28	5.41	5.55	3.73	3.72	3.72	9	9.50
37 12/2010	7:29	Tine	Middle	2.5	20.60	20.60	20.00	8.38	8.38	0.01	35.25	35.23	00.24	77.4	76.6	74.0	5.66	5.85	0.00	3.72	3.72	0.72	10	0.00
11/12/2013	18:45	Cloudy	Middle	2.5	20.60	20.60	20.50	8.10	8.10	8.10	32.55	32.55	32.56	77.4	77.3	77.4	5.75	5.75	5.76	6.05	6.12	6.11	4	4.50
	18:47		Middle	2.5	20.40	20.40	20.00	8.10	8.10	5.10	32.57	32.57	02.00	77.2	77.6		5.74	5.78	0.70	6.13	6.14	0	5	1.00
13/12/2013	22:55	Cloudy	Middle	2.5	20.30	20.30	20.30	8.12	8.12	8.12	32.61	32.60	32.61	84.8	84.5	84.4	6.36	6.33	6.32	6.48	6.49	6.48	6	6.50
	22:57		Middle	2.5	20.30	20.30		8.12	8.12		32.61	32.60		84.0	84.2		6.28	6.30		6.49	6.47		7	
17/12/2013	0:56	Cloudy	Middle	2.5	19.10	19.20	19.15	8.20	8.20	8.20	32.60	32.59	32.67	82.7	84.3	83.8	6.34	6.47	6.45	4.59	4.60	4.59	4	4.00
	0:58		Middle	2.5	19.20	19.10		8.20	8.20	5.20	32.89	32.60		84.7	83.5		6.50	6.48		4.60	4.58		4	
19/12/2013	0:15	Fine	Middle	3.0	18.00	18.00	17.85	8.31	8.31	8.31	32.78	32.78	32.78	86.6	86.4	86.2	6.76	6.75	6.74	6.77	6.73	6.71	7	5.50
	0:01		Middle	3.0	17.70	17.70		8.30	8.30		32.77	32.77		86.1	85.7		6.73	6.71		6.69	6.65		4	
21/12/2013	1:36	Fine	Middle	3.0	18.70	18.70	18.60	8.36	8.36	8.34	32.92	32.92	32.92	86.0	85.8	85.7	6.61	6.60	6.59	3.89	3.84	3.84	4	4.00
	1:38		Middle	3.0	18.50	18.50		8.31	8.31		32.92	32.92		85.5	85.3		6.57	6.56		3.83	3.79		4	
24/12/2013	3:01	Fine	Middle	3.0	18.30	18.30	18.25	8.37	8.37	8.34	32.92	32.92	32.92	79.9	79.7	79.6	6.18	6.17	5.41	4.87	4.83	4.83	4	3.50
	3:03		Middle	3.0	18.20	18.20		8.31	8.31		32.91	32.91		79.4	79.2		6.15	3.14		4.84	4.76		3	
26/12/2013	4:27	Fine	Middle	3.0	18.10	18.10	17.90	8.37	8.37	8.34	32.86	32.86	32.86	75.8	75.6	75.5	5.92	5.91	5.91	3.71	3.72	3.69	3	3.00
	4:29		Middle	3.0	17.70	17.70		8.30	8.30		32.85	32.85		75.3	75.2		5.90	5.89		3.68	3.63		3	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P3 - APA Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salini	ty	С	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		00110111011	n	n	Va	llue	Average	Va	lue	Average	Va	alue	Average	Va	alue	Average	Va	lue	Average	Va		Average		Average
28/11/2013	10:43	Cloudy	Middle	2.5	21.60	21.60	21.60	8.37	8.37	8.37	35.30	35.30	35.30	64.6	65.1	64.6	4.64	4.68	4.64	5.04	5.06	5.05	7	6.50
	10:45		Middle	2.5	21.60	21.60		8.37	8.37		35.30	35.30		64.0	64.7		4.60	4.65		5.07	5.03		6	
30/11/2013	11:15	Fine	Middle	2.5	20.90	20.90	20.80	8.40	8.40	8.41	35.07	35.07	35.21	59.0	59.0	58.8	4.30	4.30	4.28	6.15	6.15	6.15	8	7.50
	11:17		Middle	2.5	20.70	20.70		8.42	8.42		35.34	35.34		58.5	58.5		4.26	4.26		6.14	6.15		7	
2/12/2013	0:26	Fine	Middle	2.5	20.80	20.80	20.60	8.44	8.44	8.44	35.43	35.43	35.44	68.4	68.2	68.0	5.00	4.99	4.98	5.76	5.98	5.88	6	5.50
	0:28		Middle	2.5	20.40	20.40		8.44	8.44		35.44	35.44		67.7	67.6		4.97	4.97		5.88	5.88		5	
4/12/2013	14:46	Fine	Middle	2.5	20.90	20.90	20.90	8.35	8.35	8.35	35.53	35.53	35.53	76.6	79.7	79.2	5.77	5.78	5.80	5.85	5.86	5.86	3	3.50
	14:48	0	Middle	2.5	20.90	20.90	20.00	8.35	8.35	0.00	35.53	35.53	00.00	80.0	80.4	. 0.2	5.81	5.85	0.00	5.87	5.86	0.00	4	0.00
7/12/2013	3:10	Fine	Middle	2.5	20.30	20.30	20.30	8.41	8.41	8.41	35.57	35.57	35.57	77.1	77.5	76.9	5.66	5.69	5.66	3.63	3.63	3.63	6	6.50
	3:12	0	Middle	2.5	20.30	20.30	20.00	8.41	8.41	0	35.57	35.57	00.01	76.6	76.5	. 0.0	5.66	5.62	0.00	3.63	3.63	0.00	7	0.00
9/12/2013	7:18	Fine	Middle	2.5	20.70	20.70	20.70	8.37	8.37	8.37	35.46	35.46	35.46	76.7	76.0	76.3	5.59	5.54	5.56	3.60	3.62	3.62	8	8.00
3/12/2013	7:20	Tille	Middle	2.5	20.70	20.70	20.70	8.37	8.37	0.07	35.46	35.46	55.40	76.1	76.2	70.5	5.55	5.56	0.00	3.63	3.62	0.02	8	0.00
11/12/2013	18:50	Cloudy	Middle	2.5	20.50	20.50	20.50	8.11	8.11	8.11	32.51	32.51	32.54	76.8	78.1	77.9	5.73	5.82	5.81	5.50	5.48	5.46	4	4.00
11/12/2010	18:52	Oloudy	Middle	2.5	20.50	20.50	20.00	8.11	8.11	0.11	32.57	32.57	02.04	78.3	78.3	77.0	5.85	5.85	0.01	5.45	5.41	0.40	4	4.00
13/12/2013	22:44	Cloudy	Middle	2.5	20.40	20.40	20.40	8.11	8.11	8.11	32.35	32.36	32.35	80.7	81.8	81.4	6.02	6.18	6.20	6.14	6.15	6.15	6	6.00
10/12/2010	22:46	Cicacy	Middle	2.5	20.40	20.40	20.10	8.11	8.11	0	32.34	32.35	02.00	82.4	80.8	• • • • • • • • • • • • • • • • • • • •	6.19	6.39	0.20	6.14	6.16	0.10	6	0.00
17/12/2013	0:47	Cloudy	Middle	2.5	19.50	19.50	19.45	8.17	8.16	8.17	32.62	32.61	32.62	79.6	80.2	79.7	6.02	6.19	6.06	4.34	4.32	4.33	4	4.00
1771272010	0:49	Oloudy	Middle	2.5	19.40	19.40	10.40	8.17	8.16	0.17	32.62	32.61	02.02	79.6	79.4	70.7	6.03	5.98	0.00	4.32	4.34	4.00	4	4.00
19/12/2013	0:33	Fine	Middle	3.0	18.70	18.70	18.55	8.27	8.27	8.28	32.77	32.77	32.76	85.9	85.6	85.5	6.61	6.59	6.59	5.54	5.50	5.49	5	6.00
10/12/2010	0:35	Tine	Middle	3.0	18.40	18.40	10.00	8.28	8.28	0.20	32.74	32.74	02.70	85.4	85.2	00.0	6.58	6.57	0.00	5.47	5.46	0.40	7	0.00
21/12/2013	1:52	Fine	Middle	3.0	18.60	18.60	18.50	8.25	8.25	8.25	32.82	32.82	32.82	85.3	85.0	85.0	6.57	6.55	6.55	3.47	3.48	3.56	4	4.00
21/12/2013	1:54	TITIC	Middle	3.0	18.40	18.40	10.50	8.25	8.25	0.20	32.82	32.82	02.02	84.9	84.7	00.0	6.55	6.53	0.55	3.42	3.88	0.00	4	7.00
24/12/2013	3:18	Fine	Middle	3.0	17.90	17.90	17.85	8.22	8.22	8.22	32.92	32.92	32.91	78.5	78.1	78.1	6.11	6.08	6.08	4.73	4.67	4.67	4	4.00
27/12/2013	3:20	TITIC	Middle	3.0	17.80	17.80	17.00	8.21	8.21	0.22	32.90	32.90	02.01	78.0	77.7	70.1	6.08	6.06	0.00	4.65	4.63	7.07	4	4.00
26/12/2013	4:43	Fine	Middle	3.0	17.60	17.60	17.55	8.19	8.19	8.19	32.84	32.84	32.83	74.6	74.2	74.1	5.85	5.82	5.82	2.57	2.55	2.53	2	2.00
20/12/2013	4:45	Fille	Middle	3.0	17.50	17.50	17.55	8.18	8.18	0.19	32.81	32.81	32.03	73.9	73.7	74.1	5.80	5.80	J.02	2.52	2.47	۷.33	2	2.00

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P4 - SOC Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salini	ty	П	O Satur	ation		DO mg/L			Turbidi NTU		Suspende	
			n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	lue	Average		Average
28/11/2013	10:32	Cloudy	Middle	2.5	21.70	21.70	21.70	8.36	8.36	8.36	35.28	35.28	35.29	64.0	64.1	64.5	4.59	4.60	4.63	5.13	5.12	5.12	8	7.50
	10:34		Middle	2.5	21.70	21.70		8.36	8.36		35.29	35.29		64.6	65.2		4.63	4.68		5.10	5.11		7	
30/11/2013	11:04	Fine	Middle	2.5	21.00	21.00	20.95	8.40	8.40	8.40	35.26	35.26	35.34	59.6	59.7	60.4	4.32	4.34	4.38	5.91	5.90	5.91	8	7.00
00/11/2010	11:06	0	Middle	2.5	20.90	20.90	20.00	8.40	8.40	0.10	35.41	35.41	00.01	61.1	61.1		4.43	4.44		5.90	5.92	0.01	6	1.00
2/12/2013	0:19	Fine	Middle	2.5	20.50	20.50	20.40	8.42	8.42	8.43	35.43	35.43	35.44	69.6	69.4	69.1	5.10	5.09	5.07	4.84	4.91	4.83	4	4.00
27.22.010	0:21		Middle	2.5	20.30	20.30	20.10	8.43	8.43	0.10	35.45	35.45	00	68.8	68.7		5.05	5.05	0.07	4.80	4.77		4	
4/12/2013	14:36	Fine	Middle	2.5	20.80	20.70	20.75	8.33	8.33	8.33	35.53	35.53	35.53	75.9	77.3	76.8	5.55	5.62	5.60	5.87	5.88	5.89	8	7.00
	14:38		Middle	2.5	20.80	20.70	20.10	8.33	8.33	0.00	35.53	35.53	00.00	76.9	77.1	. 0.0	5.61	5.63	0.00	5.90	5.89	0.00	6	1.00
7/12/2013	3:00	Fine	Middle	2.5	20.40	20.40	20.40	8.39	8.39	8.39	35.58	35.58	35.58	73.6	74.4	73.8	5.40	5.47	5.42	3.63	3.63	3.63	8	8.50
	3:02		Middle	2.5	20.40	20.40		8.39	8.39		35.58	35.58		74.2	73.1		5.45	5.37		3.63	3.63		9	
9/12/2013	7:08	Fine	Middle	2.5	20.70	20.70	20.70	8.36	8.36	8.36	35.49	35.49	35.49	74.8	76.3	76.0	5.45	5.56	5.54	4.99	4.98	4.99	8	7.00
07.12.20.10	7:10		Middle	2.5	20.70	20.70	20.10	8.36	8.36	0.00	35.49	35.49	00.10	76.0	76.9	. 0.0	5.54	5.61	0.01	4.99	4.98		6	1.00
11/12/2013	18:55	Cloudy	Middle	2.5	20.60	20.60	20.60	8.11	8.11	8.11	32.54	32.54	32.54	80.5	80.2	79.5	5.99	5.99	5.93	5.22	5.22	5.22	5	4.50
	18:57		Middle	2.5	20.60	20.60		8.11	8.11		32.54	32.54		79.6	77.6		5.93	5.79		5.21	5.21		4	
13/12/2013	22:33	Cloudy	Middle	2.5	20.40	20.40	20.40	8.14	8.14	8.14	32.70	32.71	32.71	78.1	80.2	79.8	5.96	6.01	6.00	4.29	4.16	4.19	5	4.50
	22:35		Middle	2.5	20.40	20.40		8.14	8.14		32.71	32.70		80.7	80.2		6.04	5.99		4.15	4.15		4	
17/12/2013	0:37	Cloudy	Middle	2.5	19.50	19.40	19.45	8.18	8.17	8.18	32.57	32.57	32.58	83.5	83.0	83.0	6.33	6.30	6.30	4.39	4.38	4.39	4	4.50
	0:39		Middle	2.5	19.40	19.50		8.17	8.18		32.58	32.58		82.1	83.2		6.25	6.32		4.38	4.40		5	
19/12/2013	0:46	Fine	Middle	3.0	18.50	18.50	18.25	8.27	8.27	8.28	32.75	32.75	32.75	86.8	86.5	86.4	6.72	6.70	6.69	5.49	5.45	5.42	7	8.50
	0:48		Middle	3.0	18.00	18.00		8.28	8.28		32.75	32.75		86.2	85.9		6.68	6.66		5.38	5.36		10	
21/12/2013	2:06	Fine	Middle	3.0	18.70	18.70	18.65	8.27	8.27	8.27	32.83	32.83	32.83	84.1	83.8	83.7	6.46	6.44	6.44	3.62	3.59	3.57	4	3.50
	2:08		Middle	3.0	18.60	18.60		8.26	8.26		32.82	32.82		83.6	83.3		6.43	6.41		3.54	3.54		3	
24/12/2013	3:37	Fine	Middle	3.0	18.30	18.30	18.25	8.26	8.26	8.25	32.87	32.87	32.87	78.1	77.9	77.9	6.05	6.04	6.04	3.82	3.81	3.78	5	5.00
	3:39		Middle	3.0	18.20	18.20		8.24	8.24		32.86	32.86		77.8	77.6	-	6.04	6.02	•	3.76	3.72		5	
26/12/2013	4:56	Fine	Middle	3.0	17.70	17.70	17.60	8.22	8.22	8.22	32.79	32.79	32.79	75.4	75.1	75.0	5.91	5.89	5.88	2.98	2.95	2.93	3	3.00
25.12.20.10	4:58		Middle	3.0	17.50	17.50		8.21	8.21	J.22	32.79	32.79	020	74.8	74.6		5.87	5.86	0.00	2.91	2.88	2.00	3	0.00

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at P5 - WCT / RT / IT Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salini ppt	ty	П	O Satur	ation		DO mg/L			Turbidi NTU		Suspende	led Solids g/L
			n	n	Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average		Average
28/11/2013	10:24	Cloudy	Middle	2.5	21.50	21.50	21.50	8.37	8.37	8.37	35.28	35.28	35.28	65.3	65.4	65.4	4.70	4.71	4.71	5.72	5.72	5.72	6	6.00
	10:26		Middle	2.5	21.50	21.50		8.37	8.37		35.28	35.28		65.3	65.4		4.70	4.71		5.72	5.73	•=	6	
30/11/2013	10:57	Fine	Middle	2.5	20.90	20.90	20.80	8.42	8.42	8.42	35.40	35.40	35.42	63.3	63.6	62.5	4.60	4.64	4.55	4.62	4.60	4.60	6	5.00
00/11/2010	10:59	0	Middle	2.5	20.70	20.70	20.00	8.42	8.42	0.12	35.44	35.44	00.12	60.9	62.1	02.0	4.43	4.52		4.59	4.60	1.00	4	0.00
2/12/2013	0:07	Fine	Middle	2.5	20.50	20.50	20.45	8.42	8.42	8.42	35.52	35.52	35.52	66.1	65.9	65.6	4.84	4.82	4.81	3.63	3.64	3.61	4	3.50
2/12/2010	0:09		Middle	2.5	20.40	20.40	20.10	8.42	8.42	0.12	35.51	35.51	00.02	65.4	65.1		4.80	4.78		3.59	3.56	0.0 .	3	0.00
4/12/2013	14:30	Fine	Middle	2.5	20.70	20.70	20.70	8.30	8.30	8.30	35.54	35.53	35.54	78.8	79.6	79.1	5.76	5.81	5.77	5.45	5.46	5.44	6	5.50
W 12/2010	14:32		Middle	2.5	20.70	20.70	200	8.30	8.30	0.00	35.54	35.54	00.01	78.6	79.4		5.74	5.76	0	5.42	5.41	0	5	0.00
7/12/2013	2:55	Fine	Middle	2.5	20.40	20.40	20.40	8.36	8.36	8.36	35.57	35.57	35.57	76.9	77.4	77.2	5.65	5.68	5.67	3.29	3.29	3.29	4	5.00
	2:57	0	Middle	2.5	20.40	20.40	20.10	8.36	8.36	0.00	35.57	35.57	00.01	77.1	77.2		5.67	5.67	0.01	3.29	3.29	0.20	6	0.00
9/12/2013	7:01	Fine	Middle	2.5	20.70	20.70	20.70	8.35	8.35	8.35	35.50	35.50	35.50	71.9	72.8	72.3	5.24	5.31	5.27	5.02	5.02	5.02	10	11.00
0/12/2010	7:03	Tine	Middle	2.5	20.70	20.70	20.70	8.35	8.35	0.00	35.50	35.50	00.00	72.0	72.5	72.0	5.25	5.29	0.27	5.01	5.01	0.02	12	11.00
11/12/2013	18:40	Cloudy	Middle	2.0	20.50	20.50	20.40	8.09	8.09	8.09	31.95	31.95	32.25	75.5	75.6	75.8	5.61	5.64	5.64	5.00	4.99	4.97	4	3.50
	18:42		Middle	2.0	20.30	20.30	20.10	8.09	8.09	0.00	32.54	32.54	02.20	76.2	75.7		5.69	5.61	0.0.	4.96	4.94		3	0.00
13/12/2013	22:27	Cloudy	Middle	2.5	20.30	20.30	20.30	8.11	8.11	8.11	32.66	32.57	32.62	79.1	79.3	79.2	5.90	5.92	5.91	4.20	4.10	4.13	5	4.50
10/12/2010	22:29		Middle	2.5	20.30	20.30	20.00	8.11	8.11	0	32.52	32.74	02.02	78.8	79.5		5.88	5.93	0.01	4.10	4.10	0	4	
17/12/2013	0:31	Cloudy	Middle	2.5	19.30	19.40	19.35	8.16	8.15	8.16	32.61	32.62	32.62	79.7	8.2	61.8	6.18	6.28	6.15	3.71	3.72	3.72	3	3.50
	0:33		Middle	2.5	19.40	19.30	10.00	8.15	8.16	0.10	32.62	32.61	02.02	79.4	80.0	01.0	6.04	6.09	0.10	3.72	3.71	0.12	4	0.00
19/12/2013	0:55	Fine	Middle	3.0	18.30	18.30	18.20	8.26	8.26	8.26	32.73	32.73	32.73	83.4	83.2	83.1	6.46	6.45	6.44	5.67	5.68	5.64	6	6.00
	0:57		Middle	3.0	18.10	18.10		8.25	8.25		32.73	32.73		83.0	82.7		6.44	6.42		5.62	5.59		6	
21/12/2013	2:14	Fine	Middle	3.0	18.50	18.50	18.40	8.25	8.24	8.24	32.81	32.81	32.82	83.6	83.5	83.2	6.45	6.45	6.44	3.64	3.63	3.59	3	3.50
	2:16		Middle	3.0	18.30	18.30		8.24	8.24		32.82	32.82		83.1	82.7		6.43	6.41	****	3.55	3.52		4	
24/12/2013	3:46	Fine	Middle	3.0	18.30	18.30	18.30	8.20	8.20	8.20	32.88	32.88	32.87	79.1	78.6	78.5	6.14	6.11	6.10	3.75	3.71	3.70	4	4.00
	3:48		Middle	3.0	18.30	18.30		8.20	8.20		32.86	32.86		78.3	78.0		6.09	6.07		3.70	3.64		4	
26/12/2013	5:03	Fine	Middle	3.0	18.00	18.00	17.90	8.16	8.16	8.16	32.70	32.70	32.73	71.0	70.7	70.7	5.53	5.51	5.51	2.33	2.31	2.29	4	4.00
25.12010	5:05		Middle	3.0	17.80	17.80		8.16	8.16	5.10	32.76	32.76	52.70	70.6	70.4		5.51	5.49	0.01	2.25	2.25	2.20	4	

Remarks:

Single underline denotes exceedance over Action Level.

Water Monitoring Result at RW21-P789 - Sun Hung Kai Centre Mid-Ebb Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Ooridition	n	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
28/11/2013	9:50	Cloudy	Middle	3.5	20.70	20.70	20.65	8.07	8.07	8.07	31.99	31.99	31.99	80.2	80.5	79.8	5.97	5.99	5.93	4.38	4.39	4.39	6	5.50
20/11/2013	9:52	Cloudy	Middle	3.5	20.60	20.60	20.03	8.06	8.06	0.07	31.99	31.99	31.99	79.5	78.8	79.0	5.90	5.87	5.85	4.39	4.41	4.55	5	3.30
30/11/2013	10:45	Fine	Middle	3.0	20.50	20.50	20.50	8.16	8.16	8.16	32.27	32.27	32.27	85.2	85.6	84.8	6.34	6.37	6.31	4.01	3.68	3.80	6	5.50
30/11/2013	10:47	Tille	Middle	3.0	20.50	20.50	20.50	8.16	8.16	0.10	32.27	32.27	32.21	85.0	83.5	04.0	6.32	6.20	0.01	3.73	3.79	5.00	5	3.30
2/12/2013	1:05	Fine	Middle	3.0	19.70	19.60	19.63	8.21	8.21	8.21	33.23	33.23	33.23	75.8	76.0	76.2	5.71	5.72	5.74	2.60	2.67	2.66	4	3.50
2/12/2013	1:06	Tille	Middle	3.0	19.60	19.60	15.05	8.21	8.21	0.21	33.22	33.22	33.23	76.7	76.3	70.2	5.78	5.74	5.74	2.77	2.59	2.00	3	0.50
4/12/2013	14:10	Fine	Middle	3.5	21.20	21.20	21.20	8.14	8.14	8.13	32.41	32.41	32.41	82.8	82.9	82.5	6.08	6.09	6.05	4.07	4.08	4.07	8	7.50
47 12/2010	14:12	Tine	Middle	3.5	21.20	21.20	21.20	8.12	8.12	0.10	32.41	32.41	02.41	81.9	82.2	02.0	5.98	6.03	0.00	4.06	4.07	4.01	7	7.00
7/12/2013	3:25	Fine	Middle	3.0	19.10	19.10	19.10	8.15	8.15	8.15	33.26	33.26	33.26	74.4	75.3	74.7	5.66	5.71	5.67	1.89	1.83	1.85	5	6.00
	3:26	0	Middle	3.0	19.10	19.10	10.10	8.15	8.15	0.10	33.26	33.26	00.20	74.4	74.5		5.66	5.66	0.01	1.85	1.84	1.00	7	0.00
9/12/2013	4:18	Fine	Middle	3.0	21.10	21.10	21.10	7.93	7.93	7.94	33.16	33.16	33.16	71.3	71.3	70.5	5.22	5.23	5.16	1.97	1.84	1.86	4	5.00
3/12/2010	4:19	Tine	Middle	3.0	21.10	21.10	21.10	7.94	7.94	7.04	33.16	33.16	00.10	70.0	69.2	70.0	5.13	5.07	0.10	1.80	1.82	1.00	6	0.00
11/12/2013	21:05	Cloudy	Middle	3.0	20.10	20.10	20.10	8.05	8.05	8.06	33.37	33.37	33.39	76.8	78.0	77.8	5.73	5.82	5.81	2.52	2.60	2.56	5	4.50
	21:06		Middle	3.0	20.10	20.10	20.10	8.07	8.07	0.00	33.40	33.40	00.00	78.3	78.2		5.84	5.83	0.01	2.54	2.58	2.00	4	1.00
13/12/2013	22:40	Cloudy	Middle	3.0	20.40	20.40	20.40	8.03	8.03	8.04	33.42	33.42	33.42	80.7	82.4	82.2	5.98	6.11	6.09	1.97	1.64	1.68	2	2.00
	22:41		Middle	3.0	20.40	20.40		8.05	8.05		33.42	33.42		82.3	83.4		6.10	6.18		1.57	1.52		2	
17/12/2013	1:25	Cloudy	Middle	3.0	17.10	17.10	17.10	8.08	8.08	8.09	31.93	31.94	31.94	71.9	72.6	72.3	5.76	5.79	5.76	2.21	2.02	2.03	3	3.00
	1:26		Middle	3.0	17.10	17.10		8.09	8.10		31.95	31.95		72.4	72.4		5.75	5.75		1.98	1.90		3	
19/12/2013	2:35	Fine	Middle	3.0	15.00	15.00	15.00	8.34	8.34	8.34	32.69	32.69	32.69	69.7	70.0	70.0	5.75	5.78	5.78	1.44	1.49	1.45	3	3.00
	2:36		Middle	3.0	15.00	15.00		8.34	8.34		32.69	32.69		70.2	70.2		5.80	5.80		1.47	1.41		3	
21/12/2013	2:30	Fine	Middle	3.0	17.20	17.20	17.20	8.32	8.32	8.32	33.36	33.36	33.36	77.9	76.8	77.5	6.13	6.05	6.10	1.61	1.55	1.64	9	6.00
	2:31		Middle	3.0	17.20	17.20		8.32	8.32		33.36	33.36		77.4	77.9		6.10	6.12		1.72	1.66		3	
24/12/2013	2:45	Fine	Middle	3.0	16.50	16.50	16.50	8.35	8.35	8.35	33.53	33.53	33.53	74.0	73.9	74.4	5.30	5.30	5.34	2.60	2.67	2.69	3	3.50
	2:46		Middle	3.0	16.50	16.50		8.34	8.34		33.52	33.52		75.0	74.7		5.38	5.36		2.72	2.75		4	
26/12/2013	4:45	Fine	Middle	3.0	16.10	16.10	16.10	8.08	8.08	8.09	32.94	32.94	32.94	65.3	66.5	66.4	5.27	5.37	5.36	1.37	1.35	1.39	2	2.00
	4:46		Middle	3.0	16.10	16.10		8.09	8.09		32.94	32.94		67.0	66.6		5.41	5.37		1.41	1.44		2	

Remarks:

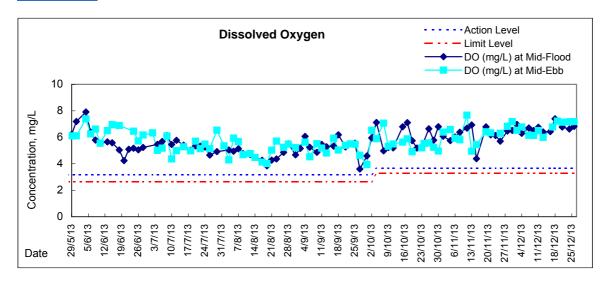
Single underline denotes exceedance over Action Level.

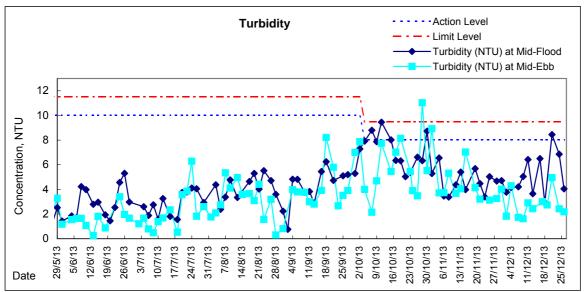
Water Monitoring Result at WSD 21 - Wan Chai Mid-Ebb Tide

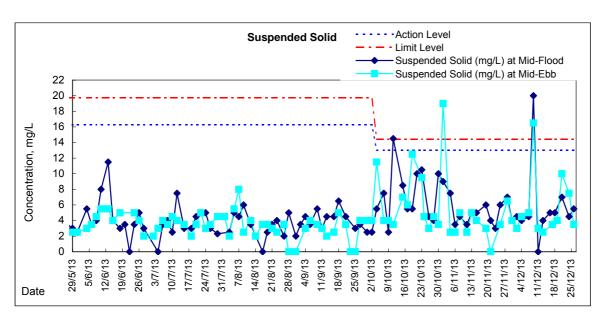
Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbidi NTU		Suspende	
		Ooridition	n	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	llue	Average	Value	Average
28/11/2013	9:41	Cloudy	Middle	1.5	21.70	21.70	21.70	8.41	8.41	8.41	33.61	33.62	33.62	53.7	54.0	54.0	3.90	3.92	3.92	4.48	4.50	4.50	8	7.00
26/11/2013	9:43	Cloudy	Middle	1.5	21.70	21.70	21.70	8.40	8.40	0.41	33.62	33.61	33.02	54.1	54.2	34.0	3.93	3.94	3.92	4.51	4.49	4.50	6	7.00
30/11/2013	10:21	Fine	Middle	1.5	21.10	21.10	21.00	8.53	8.53	8.52	35.01	35.01	34.28	55.9	57.0	57.3	4.05	4.14	4.16	7.77	7.76	7.77	15	<u>15.50</u>
30/11/2013	10:23	Tille	Middle	1.5	20.90	20.90	21.00	8.50	8.50	0.52	35.05	32.05	34.20	58.4	58.0	37.3	4.24	4.21	4.10	7.76	7.78	7.77	16	13.30
2/12/2013	23:10	Fine	Middle	2.5	20.70	20.70	20.65	8.53	8.53	8.50	35.02	35.02	35.02	56.2	56.0	55.8	4.11	4.10	4.08	3.24	3.21	3.22	3	3.00
2/12/2013	23:43	Tille	Middle	2.5	20.60	20.60	20.03	8.47	8.47	0.50	35.01	35.01	55.02	55.5	55.3	55.0	4.07	4.05	4.00	3.21	3.20	5.22	3	3.00
4/12/2013	13:53	Fine	Middle	1.0	21.30	21.30	16.50	7.84	7.85	7.86	34.96	34.97	34.97	74.3	74.1	74.2	5.40	5.39	5.40	3.03	3.01	3.01	4	3.50
47 12/2010	13:55	Tine	Middle	1.0	21.20	2.20	10.00	7.87	7.86	7.00	34.96	34.97	04.07	74.4	73.8	74.2	5.41	5.38	0.40	2.98	3.00	0.01	3	0.00
7/12/2013	2:19	Fine	Middle	2.0	20.80	20.80	20.80	8.38	8.38	8.38	34.73	34.73	34.73	62.0	62.7	62.3	4.53	4.58	4.55	4.95	4.96	4.95	16	15.50
	2:21		Middle	2.0	20.80	20.80	20.00	8.38	8.38	0.00	34.73	34.73	00	62.3	62.1	02.0	4.55	4.54		4.93	4.94		15	10.00
9/12/2013	6:23	Fine	Middle	1.5	21.40	21.40	21.40	8.45	8.45	8.45	34.07	34.07	34.07	50.3	50.7	50.9	3.65	3.68	3.69	2.03	2.03	2.03	16	10.50
5,12,2010	6:25		Middle	1.5	21.40	21.40	20	8.45	8.45	0.10	34.07	34.07	01.07	51.1	51.3	00.0	3.71	3.73	0.00	2.03	2.03	2.00	5	10.00
11/12/2013	18:20	Cloudy	Middle	2.0	20.80	20.80	20.70	8.12	8.12	8.12	32.51	32.51	32.51	74.4	74.8	74.6	5.51	5.55	5.53	5.24	5.40	5.42	3	3.00
	18:22		Middle	2.0	20.60	20.60		8.12	8.12		32.51	32.51		74.7	74.4		5.53	5.52		5.44	5.61		3	
13/12/2013	21:52	Cloudy	Middle	2.0	20.70	20.70	20.70	8.14	8.14	8.15	31.88	31.89	31.89	78.6	79.0	78.4	5.85	5.89	5.84	3.52	3.63	3.61	3	3.00
	21:54		Middle	2.0	20.70	20.70		8.15	8.15		31.88	31.89		78.2	77.9		5.82	5.81		3.64	3.63		3	
17/12/2013	23:45	Cloudy	Middle	2.0	19.20	19.10	19.15	8.19	8.19	8.19	31.16	31.16	31.16	63.7	66.9	64.7	4.98	5.12	4.99	7.33	7.34	7.34	10	10.00
	23:47		Middle	2.0	19.20	19.10		8.19	8.19		31.16	31.16		64.8	63.4		4.98	4.86		7.35	7.33		10	
19/12/2013	1:45	Fine	Middle	2.0	18.40	18.40	18.25	8.18	8.18	8.18	31.69	31.69	31.69	64.9	64.8	64.7	5.05	5.05	5.04	6.63	6.57	6.56	4	4.00
	1:47		Middle	2.0	18.10	18.10		8.17	8.17		31.69	31.69		64.6	64.3		5.03	5.02		6.54	6.48		4	
21/12/2013	2:54	Fine	Middle	2.0	18.80	18.80	18.70	8.17	8.17	8.17	31.74	31.74	31.77	71.4	71.2	71.1	5.51	5.50	5.50	4.98	4.94	4.91	9	8.00
	2:56		Middle	2.0	18.60	18.60		8.16	8.16		31.79	31.79		71.0	70.8		5.49	5.48		4.86	4.87		7	
24/12/2013	4:31	Fine	Middle	2.0	17.80	17.80	17.75	8.16	8.16	8.16	30.94	30.94	30.98	70.3	70.1	69.9	5.56	5.55	5.54	4.62	4.61	4.58	4	4.50
	4:33		Middle	2.0	17.70	17.70		8.15	8.15		31.01	31.01		69.8	69.2		5.53	5.50		4.56	4.53		5	
26/12/2013	5:46	Fine	Middle	2.0	17.70	17.70	17.60	8.18	8.18	8.18	32.42	32.42	32.42	78.4	78.0	77.8	6.16	6.14	6.13	3.52	3.53	3.50	3	3.00
	5:48		Middle	2.0	17.50	17.50		8.18	8.18		32.42	32.42		77.6	77.3		6.12	6.10		3.49	3.44		3	

Remarks:

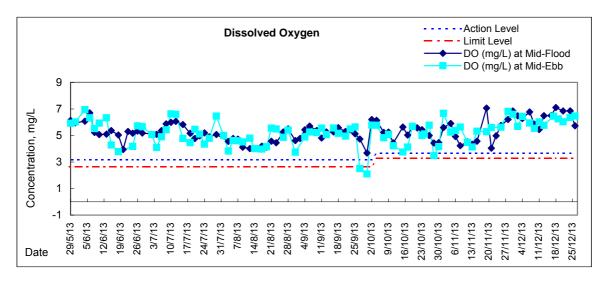
Single underline denotes exceedance over Action Level.

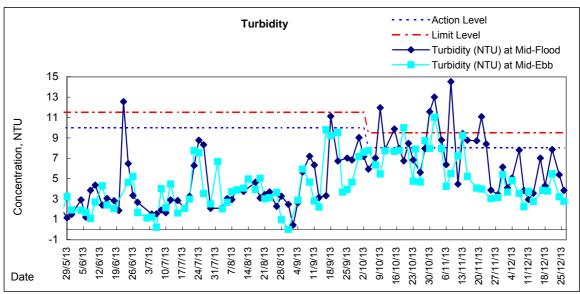

Water Monitoring Result at WSD19 - Sheung Wan Mid-Ebb Tide

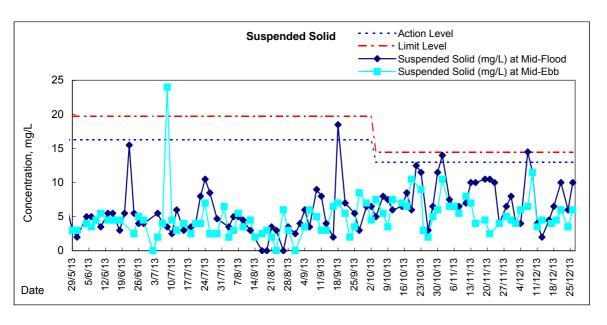

Date	Time	Weater Condition	Samplin	•	Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Ooridition	n	n	Va	llue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va		Average	Va	llue	Average	Value	Average
28/11/2013	9:18	Cloudy	Middle	3.0	20.60	20.60	20.45	8.09	8.09	8.08	32.03	32.03	32.04	85.9	84.8	84.9	6.41	6.34	6.35	6.10	6.08	6.06	8	7.50
26/11/2013	9:20	Cloudy	Middle	3.0	20.30	20.30	20.45	8.07	8.07	6.06	32.04	32.04	32.04	84.9	84.1	04.9	6.35	6.31	0.55	6.05	6.02	0.00	7	7.50
30/11/2013	10:25	Fine	Middle	3.0	20.10	20.10	20.05	8.17	8.17	8.17	32.28	32.28	32.26	80.3	80.7	80.6	6.03	6.07	6.06	6.31	6.11	6.12	9	8.00
30/11/2013	10:27	Tille	Middle	3.0	20.00	20.00	20.03	8.16	8.16	0.17	32.24	32.24	32.20	80.6	80.9	00.0	6.06	6.08	0.00	6.04	6.03	0.12	7	0.00
2/12/2013	3:05	Fine	Middle	1.5	20.00	20.00	19.98	8.26	8.26	8.26	33.16	33.25	33.21	78.4	79.5	78.8	5.89	5.95	5.91	5.07	5.16	5.06	4	4.00
2/12/2010	3:06	Tine	Middle	1.5	19.90	20.00	10.00	8.26	8.26	0.20	33.16	33.26	00.21	79.1	78.3	70.0	5.93	5.87	0.01	5.02	4.99	0.00	4	4.00
4/12/2013	13:50	Fine	Middle	3.0	21.40	21.40	21.35	8.13	8.13	8.12	32.45	32.45	32.45	84.3	84.7	84.6	6.18	6.21	6.20	18.25	18.17	18.28	8	8.00
47 12/2010	13:52	Tine	Middle	3.0	21.30	21.30	21.00	8.11	8.11	0.12	32.45	32.45	02.40	84.6	84.6	04.0	6.20	6.20	0.20	18.33	18.35	10.20	8	0.00
7/12/2013	5:17	Fine	Middle	1.5	19.60	19.60	19.55	7.99	7.99	8.00	32.86	32.86	32.92	75.6	75.9	75.0	5.71	5.74	5.67	4.09	4.11	4.15	9	8.00
	5:18	0	Middle	1.5	19.50	19.50	10.00	8.02	8.01	0.00	32.97	32.97	02.02	73.9	74.5	7 0.0	5.59	5.63	0.01	4.24	4.16	0	7	0.00
9/12/2013	6:00	Fine	Middle	1.5	20.80	20.80	20.80	8.03	8.03	8.04	33.12	33.12	33.13	73.8	74.7	74.1	5.15	5.50	5.24	4.37	4.32	4.21	17	13.00
0/12/2010	6:01	Tine	Middle	1.5	20.80	20.80	20.00	8.04	8.04	0.04	33.13	33.13	00.10	74.1	73.7	7-7.1	5.16	5.13	0.24	4.04	4.10	4.21	9	10.00
11/12/2013	21:40	Cloudy	Middle	1.5	20.20	20.20	20.20	8.29	8.29	8.29	33.45	33.49	33.36	79.1	79.6	79.5	5.39	5.94	5.80	5.33	5.40	5.34	6	6.00
	21:41		Middle	1.5	20.20	20.20	20:20	8.29	8.29	0.20	33.12	33.37	00.00	79.4	79.8	7 0.0	5.92	5.95	0.00	5.43	5.21	0.0 .	6	0.00
13/12/2013	0:46	Cloudy	Middle	1.5	20.40	20.40	20.40	8.23	8.23	8.23	33.63	33.63	33.63	79.3	79.4	79.2	5.87	5.88	5.86	3.54	3.43	3.41	3	4.00
	0:47		Middle	1.5	20.40	20.40		8.23	8.23		33.63	33.63		79.1	78.8		5.86	5.84		3.34	3.31		5	
17/12/2013	3:10	Cloudy	Middle	1.5	17.40	17.40	17.40	8.34	8.34	8.34	33.28	33.28	33.34	73.3	74.6	74.5	5.75	5.87	5.85	5.57	5.63	5.46	6	6.50
	3:11		Middle	1.5	17.40	17.40		8.33	8.33		33.39	33.39		75.3	74.8		5.91	5.87		5.33	5.29		7	
19/12/2013	4:22	Fine	Middle	1.5	16.40	16.40	16.40	8.32	8.32	8.32	33.42	33.45	33.45	76.6	78.5	77.8	6.12	6.28	6.23	3.92	3.80	3.80	13	10.00
	4:23		Middle	1.5	16.40	16.40		8.32	8.32		33.46	33.46		77.7	78.3		6.23	6.27		3.77	3.70		7	
21/12/2013	4:46	Fine	Middle	1.5	17.40	17.40	17.40	8.34	8.34	8.34	33.56	33.54	33.55	76.9	77.0	77.2	6.02	6.03	6.04	3.67	3.42	3.51	6	6.00
	4:47		Middle	1.5	17.40	17.40		8.34	8.34		33.54	33.55		77.2	77.5		6.05	6.07		3.46	3.48		6	
24/12/2013	4:40	Fine	Middle	1.5	16.80	16.80	16.75	8.32	8.32	8.31	33.73	33.73	33.74	76.6	77.3	76.9	6.07	6.12	6.09	3.94	4.02	4.02	7	6.50
	4:41		Middle	1.5	16.70	16.70		8.30	8.30		33.74	33.74		76.9	76.8		6.09	6.09		3.99	4.11		6	
26/12/2013	4:25	Fine	Middle	1.5	16.10	16.10	16.05	8.09	8.09	8.11	33.54	33.55	33.55	76.9	77.4	77.0	6.20	6.23	6.20	2.52	2.43	2.49	4	4.00
	4:26		Middle	1.5	16.00	16.00		8.12	8.12		33.56	33.56		77.2	76.6		6.20	6.15		2.55	2.46		4	

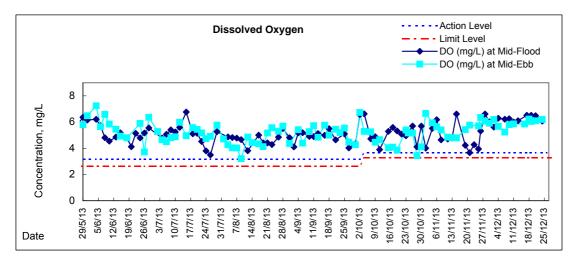

Remarks:

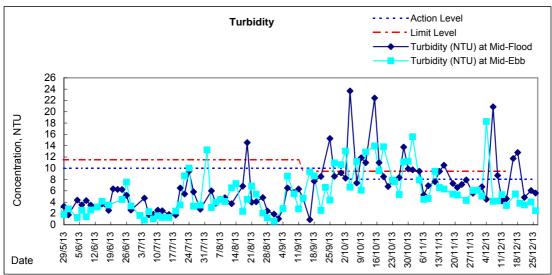
Single underline denotes exceedance over Action Level.

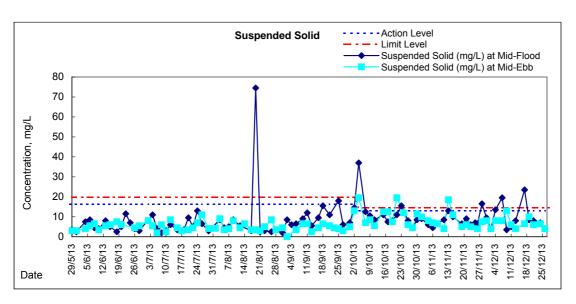

Graphic Presentation of Water Quality Result of WSD9 - Tai Wan

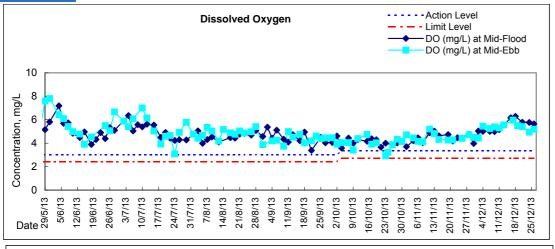


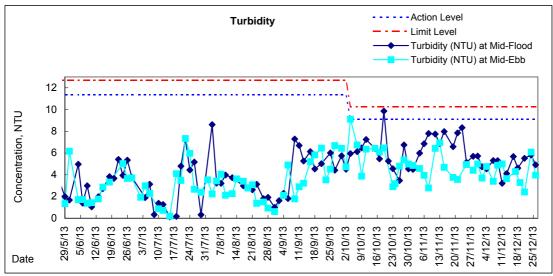


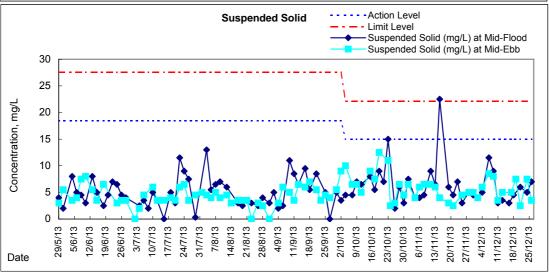

Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay

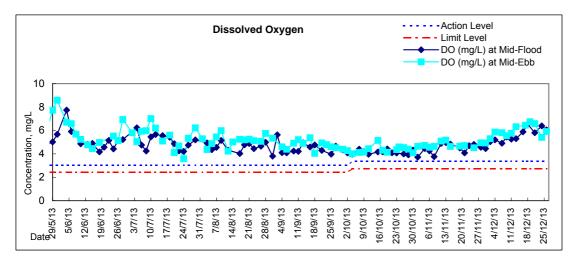


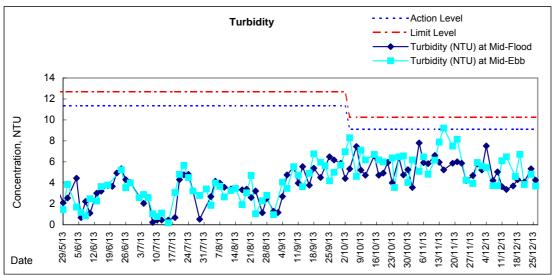


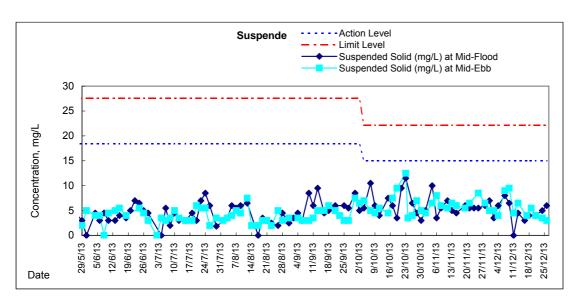

Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan

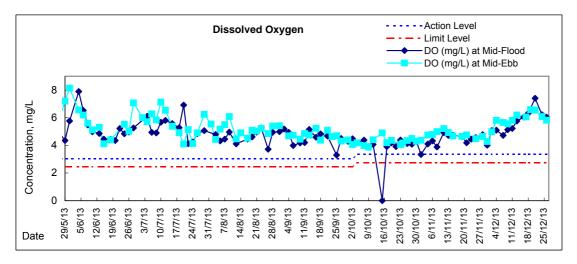


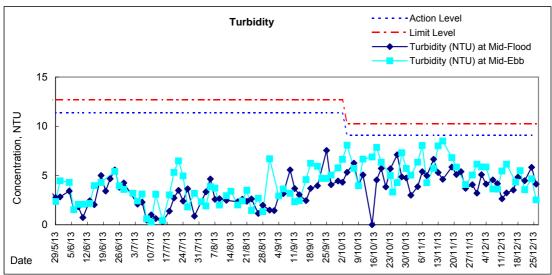


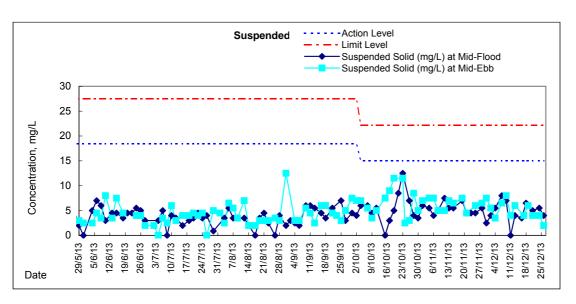

Graphic Presentation of Water Quality Result of C1 - HKCEC

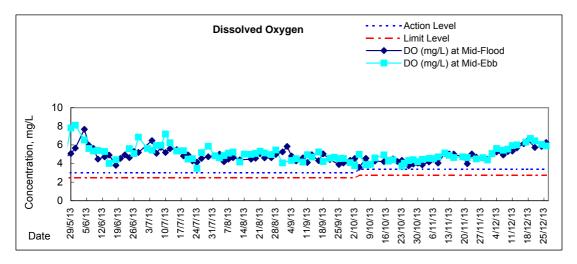


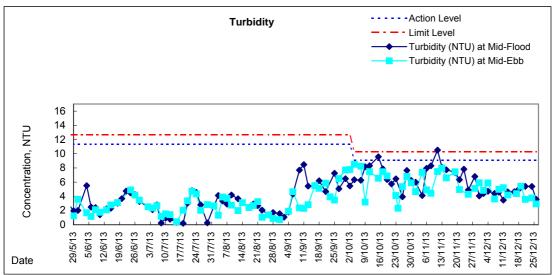


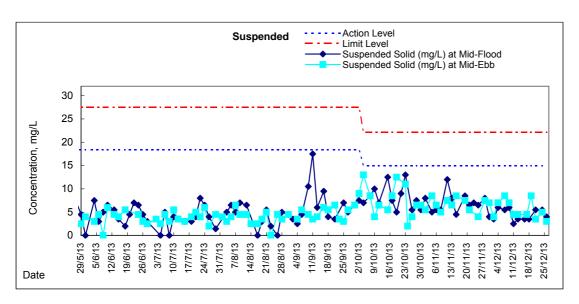

Graphic Presentation of Water Quality Result of P1 - HKCEC Phase I

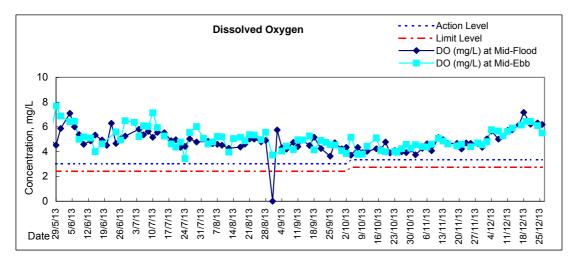


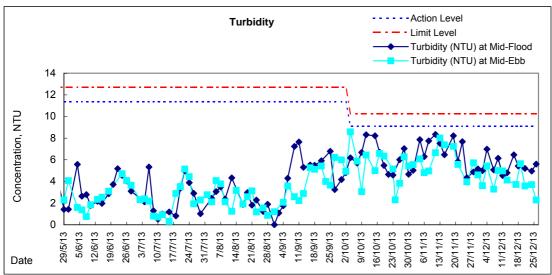


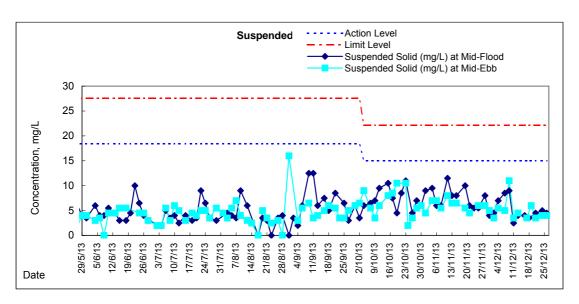


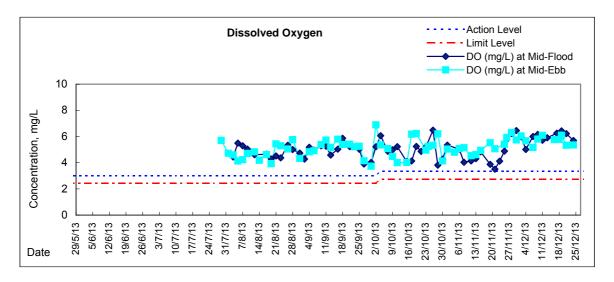


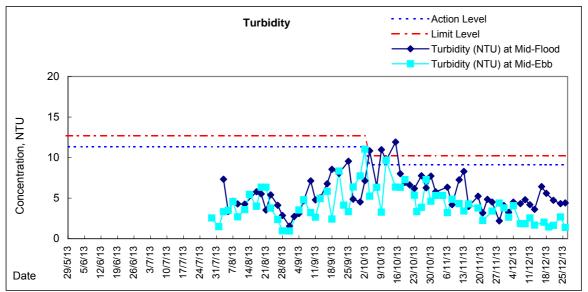


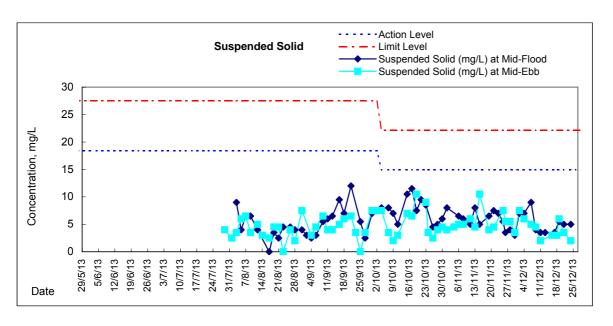

Graphic Presentation of Water Quality Result of P4 - SOC

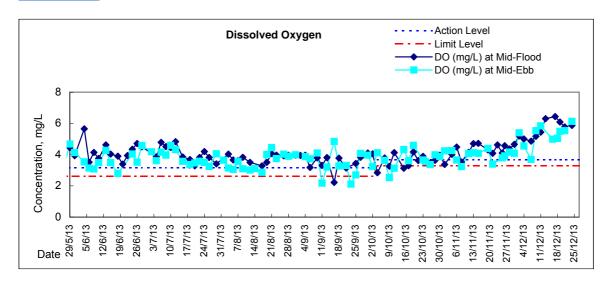


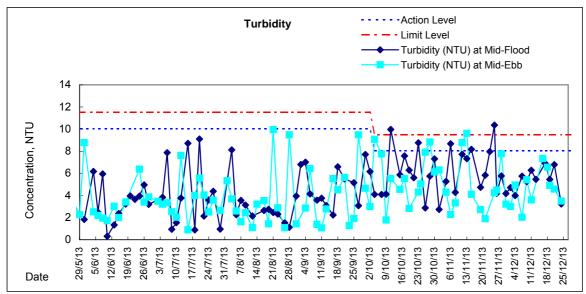


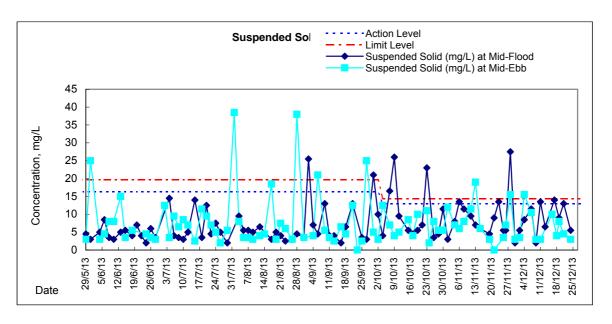

Graphic Presentation of Water Quality Result of P5 - WCT / RT / IT



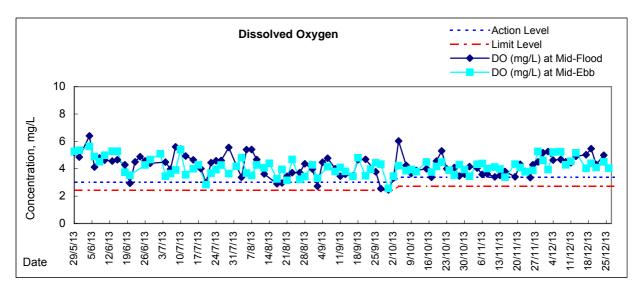


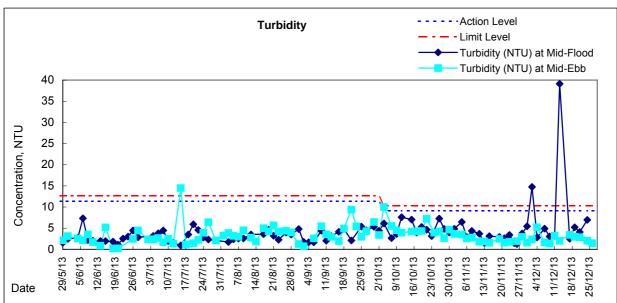

Graphic Presentation of Water Quality Result of RW21-P789 - GEC/CRC/SHK

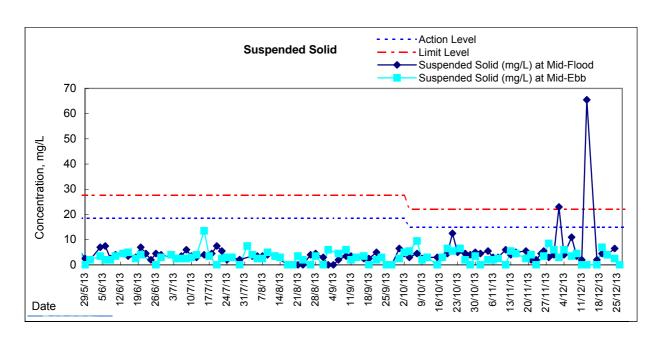




Graphic Presentation of Water Quality Result of WSD21 - Wan Chai







Graphic Presentation of Water Quality Result of C7 - Windsor House

Water Monitoring Result at C6 - Excelsior Hotel Mid-Flood Tide

Data T																			
Date	Time	Weater Condition		g Depth	Wate	er Temp °C	erature		pH -			Salinit ppt	У	D	O Satur %	ation		DO mg/L	
			n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average
<u> </u>	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
	14:05	Fine	Middle	1.5	21.70	21.70	21.7	8.07	8.07	8.1	31.18	31.18	31.2	70.4	70.8	70.6	5.17	5.20	5.19
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u> </u>	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/11/2013 14	14:50	Fine	Middle	1.5	21.10	21.10	21.1	8.11	8.11	8.1	31.40	31.40	31.4	79.3	79.0	79.2	5.87	5.84	5.86
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u> </u>	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/12/2013 15	15:20	Fine	Middle	1.5	21.20	21.20	21.2	8.11	8.11	8.1	31.62	31.62	31.6	72.3	72.0	72.2	5.32	5.30	5.31
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u> </u>	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/12/2013 19	19:35	Fine	Middle	1.5	20.00	20.00	20.0	8.05	8.05	8.1	32.36	32.36	32.4	80.6	80.6	80.6	6.07	6.07	6.07
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u>_</u>	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/12/2013 11	11:19	Fine	Middle	1.5	20.70	20.70	20.7	8.09	8.09	8.1	31.76	31.76	31.8	80.0	79.5	79.8	5.95	5.91	5.93
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/12/2013 12	12:37	Fine	Middle	1.5	21.50	21.50	21.5	8.06	8.06	8.1	31.80	31.80	31.8	70.4	71.9	71.2	5.16	5.26	5.21
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013 14	14:06	Fine	Middle	1.5	21.20	21.20	21.2	8.09	8.09	8.1	31.73	31.73	31.7	80.8	80.5	80.7	5.95	5.93	5.94
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	1	-	1	1	-	1	i	1	1	1	1	1	-	1	1	1
13/12/2013	15:30	Fine	Middle	1.5	20.90	20.90	20.9	8.19	8.19	8.2	32.92	32.92	32.9	68.4	68.3	68.4	5.83	5.83	5.83
	-		Bottom	1	-	1	1	-	1	1	-	1		1	1	-	1	1	1
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16/12/2013	15:40	Cloudy	Middle	1.5	19.00	19.00	19.0	8.24	8.24	8.2	32.04	32.04	32.0	67.6	67.5	67.6	5.20	5.19	5.20
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18/12/2013 16	16:15	Fine	Middle	1.5	18.40	18.40	18.4	8.33	8.33	8.3	34.07	34.07	34.1	85.7	85.4	85.6	6.57	6.55	6.56
	-		Bottom	ı	-	-	-	-	-	-	-	-	1	- 1	-	-	1	-	
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/12/2013 10	10:25	Fine	Middle	1.5	18.40	18.40	18.4	8.40	8.40	8.4	35.11	35.11	35.1	58.9	58.8	58.9	4.48	4.48	4.48
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24/12/2013 11	11:45	Fine	Middle	1.5	18.50	18.50	18.5	8.46	8.46	8.5	35.29	35.29	35.3	74.3	74.4	74.4	5.65	5.66	5.66
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26/12/2013 10	10:30	Fine	Middle	1.0	18.00	18.00	18.0	8.07	8.07	8.1	31.96	31.96	32.0	73.7	73.9	73.8	5.76	5.79	5.78
	-	ŀ	Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Water Monitoring Result at C7 - Windsor House Mid-Flood Tide

			1																
Date	Time	Weater	Samplin	g Depth	Wat	er Temp °C	erature		pН			Salinit	ty	D	O Satur	ation		DO	
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	ppt llue	Average	Va	% lue	Average	Va	mg/L lue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
28/11/2013	14:15	Fine	Middle	1.5	21.40	21.40	21.4	8.02	8.02	8.0	31.05	31.05	31.1	56.7	57.2	57.0	4.19	4.22	4.21
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/11/2013	15:00	Fine	Middle	1.5	20.90	20.90	20.9	8.09	8.09	8.1	31.30	31.30	31.3	61.3	60.9	61.1	4.55	4.52	4.54
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/12/2013	15:22	Fine	Middle	1.5	21.20	21.20	21.2	8.08	8.08	8.1	31.73	31.73	31.7	68.8	68.9	68.9	5.06	5.06	5.06
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/12/2013	19:25	Fine	Middle	1.5	19.80	19.80	19.8	8.13	8.13	8.1	32.75	32.75	32.8	71.4	71.7	71.6	5.37	5.40	5.39
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/12/2013	11:30	Fine	Middle	1.5	20.90	20.90	20.9	8.07	8.07	8.1	31.68	31.68	31.7	60.3	60.4	60.4	4.47	4.48	4.48
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/12/2013	12:45	Fine	Middle	1.5	21.60	21.60	21.6	8.05	8.05	8.1	31.91	31.91	31.9	61.1	61.8	61.5	4.45	4.50	4.48
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013	14:15	Fine	Middle	1.5	21.20	21.20	21.2	8.06	8.06	8.1	31.80	31.80	31.8	58.7	60.1	59.4	4.31	4.41	4.36
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/12/2013	15:45	Fine	Middle	1.5	20.70	20.70	20.7	8.16	8.16	8.2	32.60	32.60	32.6	59.9	60.8	60.4	4.43	4.50	4.47
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16/12/2013	15:50	Cloudy	Middle	1.5	18.40	18.40	18.4	8.24	8.24	8.2	32.03	32.03	32.0	59.5	60.7	60.1	4.63	4.73	4.68
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18/12/2013	16:20	Fine	Middle	1.5	18.30	18.30	18.3	8.35	8.35	8.4	34.16	34.16	34.2	63.5	64.4	64.0	4.95	4.99	4.97
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/12/2013	10:30	Fine	Middle	1.5	18.50	18.50	18.5	8.48	8.48	8.5	35.13	35.13	35.1	69.3	69.9	69.6	5.27	5.31	5.29
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24/12/2013	12:00	Fine	Middle	1.5	18.60	18.60	18.6	8.44	8.44	8.4	35.26	35.26	35.3	56.0	55.8	55.9	4.25	4.24	4.25
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26/12/2013	10:20	Fine	Middle	1.0	17.50	17.50	17.5	8.29	8.29	8.3	32.02	32.02	32.0	62.9	63.3	63.1	4.97	5.00	4.99
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Water Monitoring Result at Ex-WPCWA SW - South-western corners of ex-Public Cargo Works Area Mid-Flood Tide

								1											
Date	Time	Weater Condition		g Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L	
			r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average
00/44/0040		Fig	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/11/2013	13:57	Fine	Middle	1.5	21.60	21.60	21.6	8.06	8.06	8.1	31.79	31.79	31.8	82.7	83.0	82.9	6.06	6.09	6.08
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/11/2013	14:47	Fine	Middle	1.5	20.60	20.60	20.6	8.13	8.13	8.1	31.65	31.65	31.7	89.8	90.0	89.9	6.69	6.70	6.70
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/12/2013	15:07	Fine	Middle	1.5	20.90	20.90	20.9	8.10	8.10	8.1	31.86	31.86	31.9	86.6	86.3	86.5	6.41	6.36	6.39
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/12/2013	20:41	Fine	Middle	1.5	20.10	20.10	20.1	8.17	8.17	8.2	30.52	30.52	30.5	48.6	48.9	48.8	3.70	3.71	<u>3.71</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/12/2013	11:10	Fine	Middle	1.5	20.60	20.60	20.6	8.11	8.11	8.1	31.99	31.99	32.0	80.4	79.6	80.0	5.99	5.94	5.97
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/12/2013	11:12	Fine	Middle	1.5	21.50	21.50	21.5	8.08	8.08	8.1	31.21	31.21	31.2	86.6	86.7	86.7	6.36	6.36	6.36
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013	14:02	Fine	Middle	1.5	21.40	21.40	21.4	8.09	8.09	8.1	31.86	31.86	31.9	72.8	70.8	71.8	5.35	5.20	5.28
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/12/2013	15:17	Fine	Middle	1.5	20.80	20.80	20.8	8.19	8.19	8.2	32.68	32.68	32.7	60.7	60.7	60.7	4.48	4.49	4.49
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	1	-	-	-	-	1	1	-	-	-	1	1	-	-	1	-
16/12/2013	15:37	Cloudy	Middle	1.5	18.40	18.40	18.4	8.26	8.26	8.3	32.91	32.91	32.9	85.6	85.5	85.6	6.61	6.61	6.61
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18/12/2013	16:07	Fine	Middle	1.5	18.30	18.30	18.3	8.37	8.37	8.4	32.10	32.10	32.1	83.9	83.9	83.9	6.52	6.53	6.53
	-		Bottom	-	-	-	-	-	-1	ī	-	-	-	- 1	-	-	- 1	-1	-
	-		Surface	-	-	-	-	-	-1	-	-	-	-	1	-	-	-	-1	-
21/12/2013	10:17	Fine	Middle	1.5	18.20	18.20	18.2	8.51	8.51	8.5	34.79	34.79	34.8	74.7	71.1	72.9	5.72	5.45	5.59
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24/12/2013	10:37	Fine	Middle	1.5	18.00	18.00	18.0	8.47	8.47	8.5	35.16	35.16	35.2	89.6	89.4	89.5	6.87	6.85	6.86
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26/12/2013	10:05	Fine	Middle	1.0	18.10	18.10	18.1	8.27	8.27	8.3	21.37	21.37	21.4	46.7	47.4	47.1	3.90	3.96	3.93
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Water Monitoring Result at Ex-WPCWA SE - South-eastern corners of ex-Public Cargo Works Area Mid-Flood Tide

Date	Time	Weater	Samplin	g Depth	Wat		erature		рН			Salini	ty	D	O Satur	ation		DO	
Date		Condition	r	n	Va	°C llue	Average	Va	lue -	Average	Va	ppt lue	Average	Va	lue %	Average	Va	mg/L ilue	Average
	-		Surface	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
28/11/2013	13:55	Fine	Middle	1.5	21.20	21.20	21.2	8.08	8.08	8.1	31.67	31.67	31.7	80.6	80.4	80.5	5.95	5.94	5.95
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/11/2013	14:45	Fine	Middle	1.5	20.70	20.70	20.7	8.14	8.14	8.1	31.79	31.79	31.8	91.5	91.1	91.3	6.80	6.77	6.79
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/12/2013	15:05	Fine	Middle	1.5	20.30	20.30	20.3	8.14	8.14	8.1	31.63	31.63	31.6	82.9	82.7	82.8	6.15	6.13	6.14
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/12/2013	20:48	Fine	Middle	1.5	20.00	19.80	19.9	8.08	8.08	8.1	30.35	30.39	30.4	51.8	53.1	52.5	3.95	4.05	4.00
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/12/2013	11:09	Fine	Middle	1.5	20.50	20.50	20.5	8.11	8.11	8.1	31.92	31.92	31.9	79.7	80.5	80.1	5.95	6.00	5.98
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/12/2013	11:09	Fine	Middle	1.5	21.10	21.10	21.1	8.05	8.05	8.1	31.79	31.79	31.8	72.9	73.3	73.1	5.38	5.41	5.40
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013	14:00	Fine	Middle	1.5	21.20	21.20	21.2	8.11	8.11	8.1	31.84	31.84	31.8	804.0	80.4	442.2	5.91	5.90	5.91
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/12/2013	15:15	Fine	Middle	1.5	23.20	23.20	23.2	8.20	8.20	8.2	33.17	33.17	33.2	88.0	83.5	85.8	6.48	6.15	6.32
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16/12/2013	15:30	Cloudy	Middle	1.5	18.10	18.10	18.1	8.27	8.27	8.3	32.88	32.88	32.9	78.0	77.9	78.0	6.07	6.07	6.07
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18/12/2013	16:05	Fine	Middle	1.5	17.80	17.80	17.8	8.32	8.32	8.3	34.85	34.85	34.9	86.9	85.7	86.3	6.71	6.67	6.69
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/12/2013	10:15	Fine	Middle	1.5	18.20	18.20	18.2	8.51	8.51	8.5	34.75	34.75	34.8	84.8	84.6	84.7	6.50	6.49	6.50
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24/12/2013	10:35	Fine	Middle	1.5	18.20	18.20	18.2	8.48	8.48	8.5	34.76	34.76	34.8	78.2	77.3	77.8	6.00	5.93	5.97
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26/12/2013	10:11	Fine	Middle	1.0	18.30	18.30	18.3	8.39	8.38	8.4	21.97	21.97	22.0	52.6	52.1	52.4	4.34	4.31	4.33
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Water Monitoring Result at C6 - Excelsior Hotel Mid-Ebb Tide

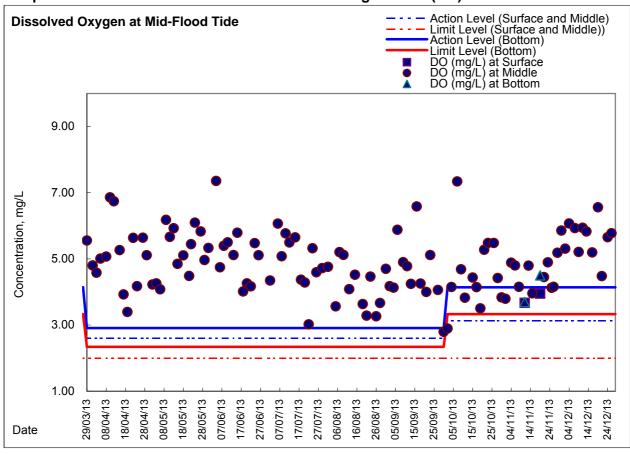
					l			l									l		
Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty		OO Satur %	ation		DO mg/l	
			n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	ilue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/11/2013	10:15	Cloudy	Middle	1.5	21.00	21.00	21.0	7.99	7.99	8.0	30.55	30.55	30.6	67.7	68.6	68.2	5.06	5.13	5.10
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/11/2013	11:10	Fine	Middle	1.5	20.90	20.90	20.9	8.13	8.13	8.1	31.25	31.25	31.3	79.9	79.4	79.7	5.94	5.91	5.93
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/12/2013	2:00	Fine	Middle	1.0	19.80	19.80	19.8	7.95	7.95	8.0	31.58	31.58	31.6	55.4	55.9	55.7	4.19	4.24	4.22
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/12/2013	14:35	Fine	Middle	1.5	21.30	21.30	21.3	8.08	8.08	8.1	31.69	31.69	31.7	81.7	82.5	82.1	5.99	6.06	6.03
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/12/2013	4:14	Fine	Middle	1.0	19.30	19.30	19.3	8.16	8.16	8.2	30.67	30.68	30.7	56.6	56.9	56.8	4.36	4.39	4.38
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/12/2013	4:56	Fine	Middle	1.0	21.00	21.00	21.0	8.03	8.03	8.0	32.21	32.21	32.2	65.7	66.7	66.2	4.85	4.92	4.89
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013	20:13	Cloudy	Middle	1.5	20.20	20.20	20.2	8.01	8.01	8.0	31.15	31.17	31.2	62.2	62.2	62.2	4.72	4.70	4.71
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/12/2013	23:28	Cloudy	Middle	1.0	20.50	20.50	20.5	7.83	7.84	7.8	31.45	31.45	31.5	53.9	54.8	54.4	4.04	4.10	4.07
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/12/2013	2:10	Cloudy	Middle	1.0	17.20	17.10	17.2	8.08	8.08	8.1	25.90	25.90	25.9	54.4	54.5	54.5	4.49	4.49	4.49
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/12/2013	3:35	Fine	Middle	1.0	15.20	15.20	15.2	8.23	8.23	8.2	25.03	25.00	25.0	54.9	54.5	54.7	4.74	4.71	4.73
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/12/2013	3:27	Fine	Middle	1.0	17.10	17.10	17.1	8.10	8.10	8.1	28.79	28.81	28.8	57.9	58.3	58.1	4.69	4.73	4.71
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24/12/2013	3:27	Fine	Middle	1.0	16.40	16.40	16.4	8.16	8.16	8.2	29.90	29.99	29.9	64.3	64.0	64.2	5.24	5.22	5.23
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26/12/2013	5:55	Fine	Middle	1.0	16.10	16.10	16.1	8.39	8.39	8.4	27.90	27.91	27.9	62.0	61.6	61.8	5.15	5.12	5.14
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

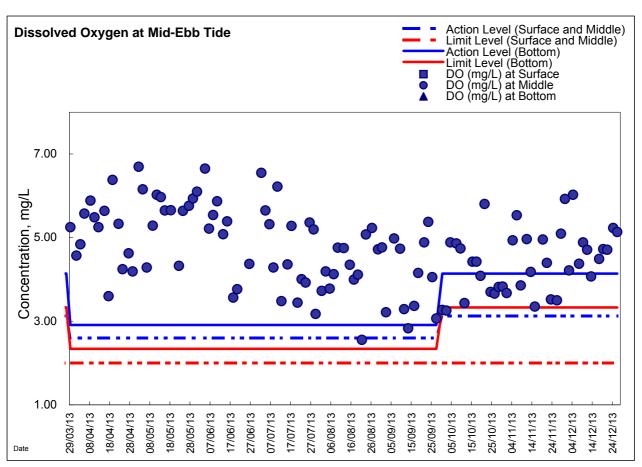
Water Monitoring Result at C7 - Windsor House Mid-Ebb Tide

			l		1														
Date	Time	Weater Condition	·	g Depth	Wat	er Temp	erature		pH -			Salinit	ty		O Satur %	ation		DO mg/L	
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/11/2013	10:25	Cloudy	Middle	1.5	20.40	20.40	20.4	7.98	7.98	8.0	30.39	30.39	30.4	66.2	66.5	66.4	5.00	5.02	5.01
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/11/2013	11:20	Fine	Middle	1.5	20.80	20.80	20.8	8.09	8.09	8.1	31.68	31.68	31.7	59.9	61.0	60.5	4.47	4.54	4.51
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/12/2013	1:50	Fine	Middle	1.0	19.50	19.50	19.5	7.94	7.94	7.9	31.15	31.15	31.2	51.2	51.4	51.3	3.91	3.93	3.92
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/12/2013	14:50	Fine	Middle	1.5	21.30	21.30	21.3	8.11	8.11	8.1	31.63	31.63	31.6	73.5	72.6	73.1	5.38	5.34	5.36
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/12/2013	4:03	Fine	Middle	1.0	19.20	19.20	19.2	8.15	8.15	8.2	31.87	31.87	31.9	69.7	70.5	70.1	5.34	5.39	5.37
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/12/2013	4:48	Fine	Middle	1.0	21.10	21.10	21.1	8.08	8.08	8.1	30.59	30.59	30.6	57.3	57.0	57.2	4.26	4.24	4.25
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013	20:05	Cloudy	Middle	1.5	20.10	20.10	20.1	8.10	8.10	8.1	32.22	32.22	32.2	61.6	61.8	61.7	4.53	4.54	4.54
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/12/2013	23:20	Cloudy	Middle	1.0	20.40	20.40	20.4	8.16	8.15	8.2	31.69	31.69	31.7	68.8	69.7	69.3	5.15	5.22	5.19
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/12/2013	1:58	Cloudy	Middle	1.0	16.90	16.90	16.9	8.12	8.12	8.1	26.48	26.48	26.5	49.7	50.3	50.0	4.10	4.16	4.13
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/12/2013	3:22	Fine	Middle	1.0	14.90	14.90	14.9	8.13	8.13	8.1	27.64	27.64	27.6	51.4	51.7	51.6	4.39	4.38	4.39
	-		Bottom	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/12/2013	3:11	Fine	Middle	1.0	16.90	16.90	16.9	8.10	8.10	8.1	29.51	29.51	29.5	57.9	54.3	56.1	4.67	4.40	4.54
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-1	-	-	-	-	-
24/12/2013	3:15	Fine	Middle	1.0	16.40	16.40	16.4	8.14	8.14	8.1	31.32	31.32	31.3	62.0	61.9	62.0	5.00	5.00	5.00
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
26/12/2013	5:45	Fine	Middle	1.0	15.90	15.90	15.9	8.10	8.10	8.1	30.93	30.93	30.9	49.7	50.0	49.9	4.08	4.10	4.09
	-		Bottom	1	-	-	-	-	-	-	-	-	-	1	-	-		-	-

Water Monitoring Result at Ex-WPCWA SW - South-western corners of ex-Public Cargo Works Area Mid-Ebb Tide

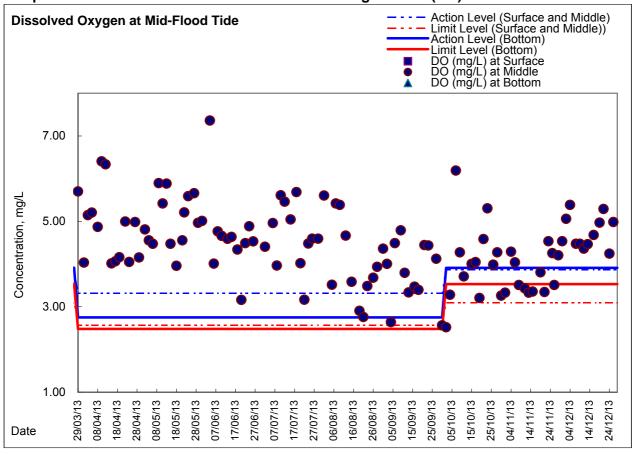
Part						ı			ı			1								
	Date	Time				Wat		perature						У			ration			
Ministrict Min			Condition	n	n	Va		Average	Va		Average	Va		Average	Va		Average	Va		Average
Minima		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
No.	28/11/2013	10:02	Cloudy	Middle	1.5	21.10	21.10	21.1	8.04	8.04	8.0	29.35	29.35	29.4	70.7	71.3	71.0	5.30	5.36	5.33
Mind		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.1 1.2	30/11/2013	11:07	z	Middle	1.5	20.60	20.60	20.6	8.15	8.15	8.2	31.34	31.34	31.3	84.4	84.5	84.5	6.29	6.30	6.30
129 129		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
March Marc		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1420 1420	2/12/2013	1:25	Fine	Middle	1.0	19.80	19.70	19.8	8.21	8.21	8.2	24.37	24.40	24.4	29.3	29.9	29.6	2.32	2.36	2.34
1430 Fine Middle 1.5 21.20		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom Surface Surfa		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Triggram	4/12/2013	14:30	Fine	Middle	1.5	21.20	21.20	21.2	8.13	8.13	8.1	31.91	31.91	31.9	85.1	79.5	82.3	5.89	7.85	6.87
Tritz2013 3.40 Fine Middle 1.0 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.50 19.40 19.40 19.50 19.40 19.40 19.50 19.40 19.40 19.40 19.50 19.40 19.40 19.40 19.50 19.40 19.		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Botton Surface Surfa		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	7/12/2013	3:40	Fine	Middle	1.0	19.50	19.40	19.5	8.11	8.11	8.1	28.89	28.90	28.9	39.0	39.6	39.3	3.03	3.07	<u>3.05</u>
11/12/2013 4.29 Fine Middle 1.0 21.10 21.10 21.11 8.08 8.06 8.1 27.49 27.68 27.6 27.3 27.4 27.4 20.6 2.07 2.07 2.07 2.07 2.07 2.07 2.07 3.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 3.09 2.09		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Solton S		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013 2 11/15 Cloudy Middle 1.0 20.30 20.30 20.30 8.27 8.26 8.30 26.96 27.13 27.00 34.5 34.5 34.5 26.6 2.66 2	9/12/2013	4:29	Fine	Middle	1.0	21.10	21.10	21.1	8.06	8.06	8.1	27.49	27.68	27.6	27.3	27.4	27.4	2.06	2.07	<u>2.07</u>
11/12/2013 21:15 Cloudy Middle 1.0 2.030 2.030 2.03 2.		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface Surf		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/12/2013 23:00 Cloudy Middle 1.0 20:50 20:50 20:50 20:50 8:09 8:09 8:1 23:10 23:10 23:10 14:0 13:9 14:0 1:10 1:09 1:10	11/12/2013	21:15	Cloudy	Middle	1.0	20.30	20.30	20.3	8.27	8.26	8.3	26.96	27.13	27.0	34.5	34.5	34.5	2.66	2.66	<u>2.66</u>
13/12/2013 23.00 Cloudy Middle 1.0 20.50 20.50 20.50 20.50 8.09 8.09 8.1 23.10 23.10 23.1 14.0 13.9 14.0 1.10 1.09 1.10		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom Surface Surfa		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/12/2013 1.35 Cloudy Middle 1.0 17.30	13/12/2013	23:00	Cloudy	Middle	1.0	20.50	20.50	20.5	8.09	8.09	8.1	23.10	23.10	23.1	14.0	13.9	14.0	1.10	1.09	<u>1.10</u>
17/12/2013 1:35 Cloudy Middle 1.0 17.30 17		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom - Surface - - - - - - - - -		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/12/2013 3:00 Fine Middle 1.0 14:90 14	17/12/2013	1:35	Cloudy	Middle	1.0	17.30	17.30	17.3	8.43	8.43	8.4	16.93	16.94	16.9	52.0	51.9	52.0	4.51	4.50	4.51
19/12/2013 3:00 Fine Middle 1.0 14.90 14.90 14.9 8.37 8.4 23.52 23.52 23.5 51.0 50.9 51.0 4.46 4.45 4.46		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom - Surface - - - - - - - - -		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface - - Middle 1.0 17.40 17.40 17.4 8.45 8.45 8.5 23.04 23.04 23.0 50.0 49.2 49.6 4.17 4.10 4.14	19/12/2013	3:00	Fine	Middle	1.0	14.90	14.90	14.9	8.37	8.37	8.4	23.52	23.52	23.5	51.0	50.9	51.0	4.46	4.45	4.46
21/12/2013		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom - - - - - - - - -		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface - - - - - - - - -	21/12/2013	2:49	Fine	Middle	1.0	17.40	17.40	17.4	8.45	8.45	8.5	23.04	23.04	23.0	50.0	49.2	49.6	4.17	4.10	4.14
24/12/2013		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom		-		Surface	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
26/12/2013 5:00 Fine Middle 1.0 16:30 16:30 16:3 8:35 8:35 8:4 23:45 23:45 23:5 47.8 47.4 47.6 4:07 4:04 4:06	24/12/2013	2:58	Fine	Middle	1.0	16.70	16.70	16.7	8.41	8.41	8.4	24.86	24.85	24.9	55.6	56.4	56.0	4.65	4.72	4.69
26/12/2013 5:00 Fine Middle 1.0 16.30 16.30 16.3 8.35 8.4 23.45 23.45 23.5 47.8 47.4 47.6 4.07 4.04 4.06		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- Bottom - - - - - - - - -	26/12/2013	5:00	Fine	Middle	1.0	16.30	16.30	16.3	8.35	8.35	8.4	23.45	23.45	23.5	47.8	47.4	47.6	4.07	4.04	4.06
		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

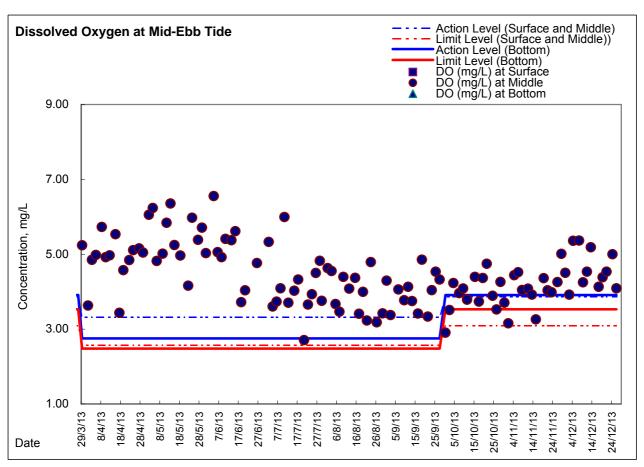



Water Monitoring Result at Ex-WPCWA SE - South-eastern corners of ex-Public Cargo Works Area Mid-Ebb Tide

Part						1			1			1								
	Date	Time				Wat		perature						У			ration			
Part			Condition	n	n	Va		Average	Va	lue	Average	Va		Average	Va		Average	Va		
Ministry		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
No. Sumboo Prince Middle No. N	28/11/2013	10:00	Cloudy	Middle	1.5	20.40	20.40	20.4	8.11	8.11	8.1	28.54	28.54	28.5	71.3	72.0	71.7	5.45	5.51	5.48
1100 Pile Alecke 150 240 254		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.00 Fine 1.00 Fine 1.00	30/11/2013	11:05	Fine	Middle	1.5	20.40	20.40	20.4	8.17	8.17	8.2	31.71	31.71	31.7	89.5	89.3	89.4	6.71	6.69	6.70
130 130 130 130 130 130 130 130 130 137 130		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Columbia		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1432 Fine Surface	2/12/2013	1:30	Fine	Middle	1.0	19.70	19.70	19.7	8.09	8.08	8.1	24.06	24.06	24.1	28.6	29.4	29.0	2.27	2.34	<u>2.31</u>
1432 Fine Middle 1.5 2.0 80 2.0 90 2.0 9 8.12 8.12 8.14 3.0 21 3.0 21 3.0 21 7.12 7.17 7.17 5.41 5.33 5.37		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Botton B		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
No. Surface	4/12/2013	14:32	Fine	Middle	1.5	20.90	20.90	20.9	8.12	8.12	8.1	30.21	30.21	30.2	72.2	71.2	71.7	5.41	5.33	5.37
Trit/22013 Safe		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom Surface Surfa		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	7/12/2013	3:46	Fine	Middle	1.0	19.30	19.30	19.3	8.02	8.02	8.0	28.84	28.84	28.8	41.4	41.7	41.6	3.22	3.24	<u>3.23</u>
11/12/2013 4:56 Fine Middle 1.0 21/20 21/20 21/20 7.95 7.95 8.0 27/25 27/55 27/4 31.1 31.3 31.2 2.35 2.37 2.36 2.36 2.37 2.36 2.37 2.36 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 2.38 2.37 2.36 3.39 2.39 2.39 2.39 2.39 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.39 2.39 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boltom Color Boltom Color Color Boltom Color C		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/12/2013 21/21 Cloudy Middle 1.0 20.30 20.30 20.31 8.12 8.12 8.11 26.81 26.95 26.9 3.66 38.8 38.7 2.98 2.99 2.99	9/12/2013	4:36	Fine	Middle	1.0	21.20	21.20	21.2	7.95	7.95	8.0	27.25	27.55	27.4	31.1	31.3	31.2	2.35	2.37	<u>2.36</u>
1/1/2/2013 2121 Cloudy Middle 1.0 2.30 20.30 20.30 20.3 8.12 8.12 8.11 26.81 26.85 26.9 38.6 38.8 38.7 2.98 2.99 2.99 2.99 2.90 2.00 2		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface Surf		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface Cloudy Middle 1.0 20.50 20.50 20.50 20.50 20.50 8.00 8.00 8.00 22.81 22.81 22.81 22.81 16.6 16.7 16.7 1.31 1.31 1.31 1.31	11/12/2013	21:21	Cloudy	Middle	1.0	20.30	20.30	20.3	8.12	8.12	8.1	26.81	26.95	26.9	38.6	38.8	38.7	2.98	2.99	<u>2.99</u>
13/12/2013 23.07 Cloudy Middle 1.0 20.50 20.50 20.50 20.50 8.00 8.00 8.00 22.81 22.81 22.81 22.8 16.6 16.7 16.7 1.31		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom Color Bottom Color Co		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/12/2013 1.43 Cloudy Middle 1.0 17.30	13/12/2013	23:07	Cloudy	Middle	1.0	20.50	20.50	20.5	8.00	8.00	8.0	22.81	22.81	22.8	16.6	16.7	16.7	1.31	1.31	<u>1.31</u>
17/12/2013 17/12/2013		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom Surface Surfa		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/12/2013 3:09 Fine Middle 1.0 14.80 14.80 14.80 14.80 8.33 8.33 8.33 23.23 23.18 23.2 52.9 52.5 52.7 4.63 4.60 4.62	17/12/2013	1:43	Cloudy	Middle	1.0	17.30	17.30	17.3	8.33	8.33	8.3	16.46	16.47	16.5	54.1	53.1	53.6	4.70	4.62	4.66
19/12/2013 3:09 Fine Middle 1.0 14.80 14.80 14.8 8.33 8.33 8.3 23.23 23.18 23.2 52.9 52.5 52.7 4.63 4.60 4.62		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom - Bottom - - - - - - - - -		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface - -	19/12/2013	3:09	Fine	Middle	1.0	14.80	14.80	14.8	8.33	8.33	8.3	23.23	23.18	23.2	52.9	52.5	52.7	4.63	4.60	4.62
21/12/2013		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom - - - - - - - - -		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Surface - - - - - - - - -	21/12/2013	2:59	Fine	Middle	1.0	17.20	17.20	17.2	8.33	8.33	8.3	22.66	22.65	22.7	51.4	52.1	51.8	4.30	4.36	4.33
24/12/2013 3:06 Fine Middle 1.0 16.80 16.80 16.8 8.27 8.27 8.3 24.53 24.54 24.5 56.0 56.4 56.2 4.68 4.70 4.69 Bottom		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26/12/2013 5:09 Fine Middle 1.0 16:30 16:30 16:3 8.25 8.25 8.3 23.26 23.26 23.3 51.1 51.7 51.4 4.36 4.41 4.39	24/12/2013	3:06	Fine	Middle	1.0	16.80	16.80	16.8	8.27	8.27	8.3	24.53	24.54	24.5	56.0	56.4	56.2	4.68	4.70	4.69
26/12/2013 5:09 Fine Middle 1.0 16.30 16.30 16.3 8.25 8.25 8.3 23.26 23.26 23.3 51.1 51.7 51.4 4.36 4.41 4.39		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- Bottom - - - - - - - - -	26/12/2013	5:09	Fine	Middle	1.0	16.30	16.30	16.3	8.25	8.25	8.3	23.26	23.26	23.3	51.1	51.7	51.4	4.36	4.41	4.39
		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-

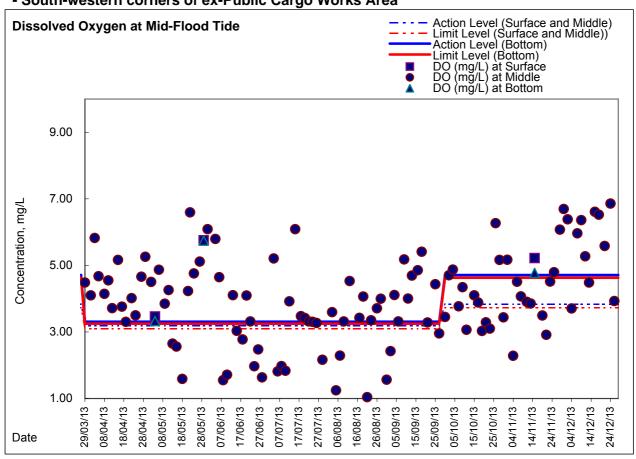
am

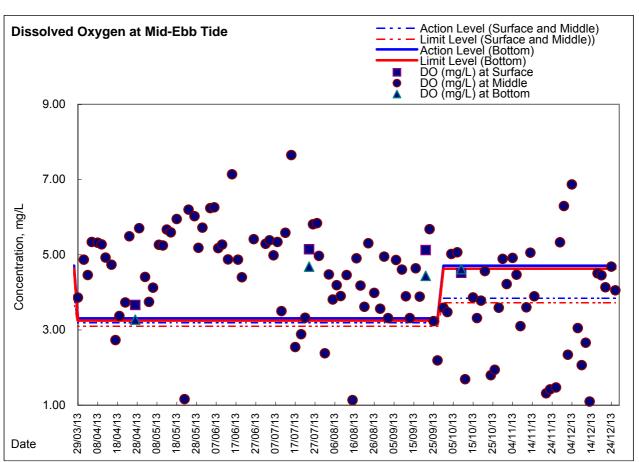

Graphic Presentation of Enhanced Water Monitoring Results (DO) at C6 - Excelsior Hotel



am

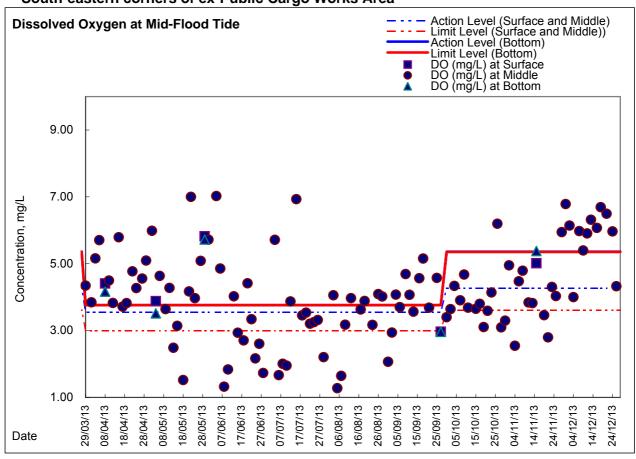
Graphic Presentation of Enhanced Water Monitoring Results (DO) at C7 - Windsor House

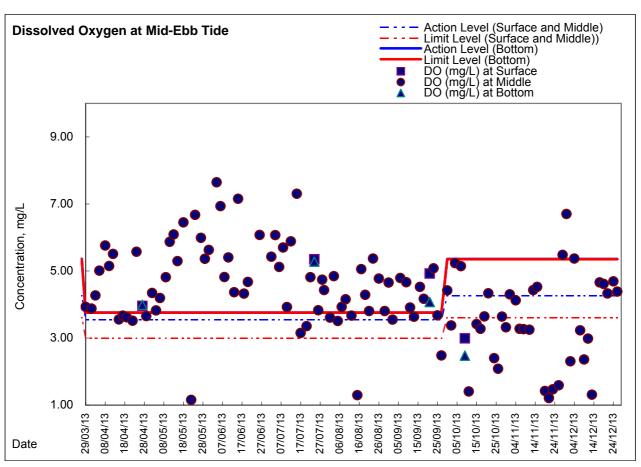




Graphic Presentation of Enhanced Water Monitoring Results (DO) at Ex-WPCWA SW

- South-western corners of ex-Public Cargo Works Area





Graphic Presentation of Enhanced Water Monitoring Results (DO) at Ex-WPCWA SE

- South-eastern corners of ex-Public Cargo Works Area

Appendix 5.5

Real-time Noise Monitoring Results and Graphical Presentations

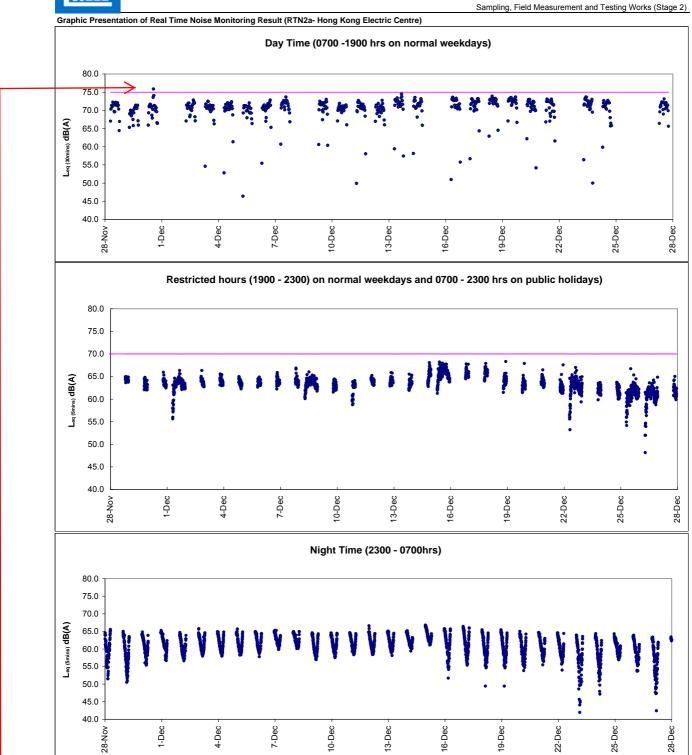
Real-time Noise Data	RTN2a (Hong Kong Electric Centr		12/12/2012 12:01 74 5	10/40/2042 7:24 72 5	24/42/2042 44/04 72 5
Normal Day 07:00-19:00	3/12/2013 12:01 70.7 3/12/2013 12:31 70.2	7/12/2013 18:31 66.8 9/12/2013 7:01 60.6	13/12/2013 13:01 71.5 13/12/2013 13:31 72.2	19/12/2013 7:31 72.5 19/12/2013 8:01 72.7	24/12/2013 14:01 72.5 24/12/2013 14:31 72.3 24/12/2013 15:01 72.1
28/11/2013 7:01 67.0	3/12/2013 13:01 71.5 3/12/2013 13:31 71.2	9/12/2013 7:31 70.1 9/12/2013 8:01 71.7	13/12/2013 14:01 72.2 13/12/2013 14:31 71.6	19/12/2013 8:31 73.1 19/12/2013 9:01 72.9	24/12/2013 15:31 72.0
28/11/2013 7:31 70.3	3/12/2013 14:01 69.6	9/12/2013 8:31 72.5	13/12/2013 15:01 71.1	19/12/2013 9:31 73.3	24/12/2013 16:01 69.7
28/11/2013 8:01 70.4	3/12/2013 14:31 69.8	9/12/2013 9:01 72.2	13/12/2013 15:31 73.4	19/12/2013 10:01 72.8	24/12/2013 16:31 68.0
28/11/2013 8:31 71.4	3/12/2013 15:01 70.5	9/12/2013 9:31 71.9	13/12/2013 16:01 74.4	19/12/2013 10:31 72.9	24/12/2013 17:01 65.7
28/11/2013 9:01 70.9	3/12/2013 15:31 70.6	9/12/2013 10:01 71.5	13/12/2013 16:31 73.7	19/12/2013 11:01 73.5	24/12/2013 17:31 66.5
28/11/2013 9:31 71.2	3/12/2013 16:01 71.3	9/12/2013 10:31 71.9	13/12/2013 17:01 72.7	19/12/2013 11:31 71.4	24/12/2013 18:01 65.8
28/11/2013 10:01 72.2	3/12/2013 16:31 71.1	9/12/2013 11:01 72.1	13/12/2013 17:31 71.6	19/12/2013 12:01 71.5	24/12/2013 18:31 65.8
28/11/2013 10:31 71.3	3/12/2013 17:01 71.3	9/12/2013 11:31 69.9	13/12/2013 18:01 70.3	19/12/2013 12:31 72.1	27/12/2013 7:01 66.4
28/11/2013 11:01 71.9	3/12/2013 17:31 70.4	9/12/2013 12:01 67.4	13/12/2013 18:31 57.4	19/12/2013 13:01 72.9	27/12/2013 7:31 69.6
28/11/2013 11:31 69.7	3/12/2013 18:01 67.2	9/12/2013 12:31 69.5	14/12/2013 7:01 58.1	19/12/2013 13:31 72.7	27/12/2013 8:01 70.9
28/11/2013 12:01 69.6	3/12/2013 18:31 66.3	9/12/2013 13:01 70.3	14/12/2013 7:31 71.1	19/12/2013 14:01 73.0	27/12/2013 8:31 71.4
28/11/2013 12:31 69.6	4/12/2013 7:01 52.8	9/12/2013 13:31 71.3	14/12/2013 8:01 72.5	19/12/2013 14:31 73.1	27/12/2013 9:01 71.1
28/11/2013 13:01 71.5	4/12/2013 7:31 70.7	9/12/2013 14:01 72.0	14/12/2013 8:31 72.9	19/12/2013 15:01 72.5	27/12/2013 9:31 71.9
28/11/2013 13:31 72.2	4/12/2013 8:01 69.8	9/12/2013 14:31 72.2	14/12/2013 9:01 73.5	19/12/2013 15:31 73.2	27/12/2013 10:01 72.3
28/11/2013 14:01 71.4	4/12/2013 8:31 70.8	9/12/2013 15:01 72.2	14/12/2013 9:31 72.7	19/12/2013 16:01 73.0	27/12/2013 10:31 72.3
28/11/2013 14:31 71.4	4/12/2013 9:01 71.6	9/12/2013 15:31 71.1	14/12/2013 10:01 70.6	19/12/2013 16:31 73.7	27/12/2013 11:01 72.2
28/11/2013 15:01 71.6	4/12/2013 9:31 70.2	9/12/2013 16:01 70.5	14/12/2013 10:31 70.8	19/12/2013 17:01 72.8	27/12/2013 11:31 70.2
28/11/2013 15:31 72.0	4/12/2013 10:01 70.1	9/12/2013 16:31 73.0	14/12/2013 11:01 70.9	19/12/2013 17:31 71.9	27/12/2013 12:01 68.9
28/11/2013 16:01 72.1	4/12/2013 10:31 70.3	9/12/2013 17:01 72.4	14/12/2013 11:31 71.0	19/12/2013 18:01 70.6	27/12/2013 12:31 72.2
28/11/2013 16:31 71.2	4/12/2013 11:01 71.7	9/12/2013 17:31 70.7	14/12/2013 12:01 68.1	19/12/2013 18:31 66.7	27/12/2013 13:01 73.2
28/11/2013 17:01 71.4	4/12/2013 11:31 72.1	9/12/2013 18:01 68.9	14/12/2013 12:31 71.5	20/12/2013 7:01 62.2	27/12/2013 13:31 72.0
28/11/2013 17:31 70.3	4/12/2013 12:01 70.3	9/12/2013 18:31 60.4	14/12/2013 13:01 71.8	20/12/2013 7:31 71.6	27/12/2013 14:01 71.6
28/11/2013 18:01 64.4	4/12/2013 12:31 70.9	10/12/2013 7:01 67.1	14/12/2013 13:31 71.8	20/12/2013 8:01 71.3	27/12/2013 14:31 70.4
28/11/2013 18:31 66.9	4/12/2013 13:01 71.6	10/12/2013 7:31 70.0	14/12/2013 14:01 71.6	20/12/2013 8:31 72.4	27/12/2013 15:01 71.5
29/11/2013 7:01 65.3	4/12/2013 13:31 70.2	10/12/2013 8:01 70.6	14/12/2013 14:31 71.8	20/12/2013 9:01 72.9	27/12/2013 15:31 72.1
29/11/2013 7:31 69.0	4/12/2013 14:01 71.3	10/12/2013 8:31 70.8	14/12/2013 15:01 71.2	20/12/2013 9:31 72.8	27/12/2013 16:01 71.0
29/11/2013 8:01 69.3	4/12/2013 14:31 71.9	10/12/2013 9:01 71.3	14/12/2013 15:31 71.6	20/12/2013 10:01 72.7	27/12/2013 16:31 70.7
29/11/2013 8:31 70.0	4/12/2013 15:01 70.5	10/12/2013 9:31 71.9 10/12/2013 10:01 70.1	14/12/2013 16:01 72.2	20/12/2013 10:31 73.0	27/12/2013 17:01 71.2
29/11/2013 9:01 69.6	4/12/2013 15:31 70.7	10/12/2013 10:31 70.4	14/12/2013 16:31 73.2	20/12/2013 11:01 72.1	27/12/2013 17:31 71.5
29/11/2013 9:31 68.5	4/12/2013 16:01 72.0		14/12/2013 17:01 72.7	20/12/2013 11:31 69.7	27/12/2013 18:01 69.9
29/11/2013 10:01 69.1	4/12/2013 16:31 72.4	10/12/2013 11:01 70.7	14/12/2013 17:31 72.4	20/12/2013 12:01 70.8	27/12/2013 18:31 65.6
29/11/2013 10:31 69.9	4/12/2013 17:01 71.1	10/12/2013 11:31 70.1	14/12/2013 18:01 69.8	20/12/2013 12:31 71.8	
29/11/2013 11:01 69.7	4/12/2013 17:31 70.4	10/12/2013 12:01 69.3	14/12/2013 18:31 65.9	20/12/2013 13:01 72.0	Normal Day 19:00-23:00,
29/11/2013 11:31 67.5	4/12/2013 18:01 68.7	10/12/2013 12:31 70.4	16/12/2013 7:01 50.9	20/12/2013 13:31 71.3	Sunday & Holiday
29/11/2013 12:01 65.8	4/12/2013 18:31 61.3	10/12/2013 13:01 71.1	16/12/2013 7:31 70.9	20/12/2013 14:01 70.3	07:00-23:00
29/11/2013 12:31 69.3	5/12/2013 7:01 46.4	10/12/2013 13:31 71.2	16/12/2013 8:01 73.0	20/12/2013 14:31 71.8	
29/11/2013 13:01 70.3	5/12/2013 7:31 69.3	10/12/2013 14:01 71.2	16/12/2013 8:31 73.5	20/12/2013 15:01 72.5	28/11/2013 19:01 64.6
29/11/2013 13:31 70.6	5/12/2013 8:01 70.7	10/12/2013 14:31 70.2	16/12/2013 9:01 73.6	20/12/2013 15:31 72.4	28/11/2013 19:06 64.3
29/11/2013 14:01 70.8	5/12/2013 8:31 71.3	10/12/2013 15:01 69.9	16/12/2013 9:31 72.8	20/12/2013 16:01 72.2	28/11/2013 19:11 65.0
29/11/2013 14:31 70.6	5/12/2013 9:01 71.0	10/12/2013 15:31 70.6	16/12/2013 10:01 73.2	20/12/2013 16:31 71.0	28/11/2013 19:16 64.5
29/11/2013 15:01 71.4	5/12/2013 9:31 71.2	10/12/2013 16:01 71.0	16/12/2013 10:31 72.7	20/12/2013 17:01 70.1	28/11/2013 19:21 64.7
29/11/2013 15:31 71.3	5/12/2013 10:01 71.1	10/12/2013 16:31 71.3	16/12/2013 11:01 72.8	20/12/2013 17:31 70.2	28/11/2013 19:26 63.6
29/11/2013 16:01 71.2	5/12/2013 10:31 71.3	10/12/2013 17:01 70.9	16/12/2013 11:31 71.4	20/12/2013 18:01 69.9	28/11/2013 19:31 64.4
29/11/2013 16:31 70.5	5/12/2013 11:01 71.0	10/12/2013 17:31 71.5	16/12/2013 12:01 70.7	20/12/2013 18:31 54.2	28/11/2013 19:36 64.2
29/11/2013 17:01 71.3	5/12/2013 11:31 69.8	10/12/2013 18:01 71.0	16/12/2013 12:31 72.7	21/12/2013 7:01 66.8	28/11/2013 19:41 64.1
29/11/2013 17:31 71.4	5/12/2013 12:01 68.0	10/12/2013 18:31 66.0	16/12/2013 13:01 73.1	21/12/2013 7:31 70.0	28/11/2013 19:46 64.5
29/11/2013 18:01 67.1	5/12/2013 12:31 69.9	11/12/2013 7:01 49.9	16/12/2013 13:31 73.3	21/12/2013 8:01 72.4	28/11/2013 19:51 64.6
29/11/2013 18:31 65.9	5/12/2013 13:01 69.9	11/12/2013 7:31 69.9	16/12/2013 14:01 72.8	21/12/2013 8:31 73.1	28/11/2013 19:56 63.7
30/11/2013 7:01 65.9	5/12/2013 13:31 70.7	11/12/2013 8:01 69.6	16/12/2013 14:31 71.3	21/12/2013 9:01 72.4	28/11/2013 20:01 64.7
30/11/2013 7:31 69.3	5/12/2013 14:01 71.0	11/12/2013 8:31 72.2	16/12/2013 15:01 70.4	21/12/2013 9:31 72.5	28/11/2013 20:06 64.1
30/11/2013 8:01 71.0	5/12/2013 14:31 71.2	11/12/2013 9:01 71.1	16/12/2013 15:31 70.6	21/12/2013 10:01 72.4	28/11/2013 20:11 64.8
30/11/2013 8:31 71.2	5/12/2013 15:01 72.0	11/12/2013 9:31 72.7	16/12/2013 16:01 71.5	21/12/2013 10:31 72.5	28/11/2013 20:16 64.9
30/11/2013 9:01 71.5	5/12/2013 15:31 69.3	11/12/2013 10:01 72.2	16/12/2013 16:31 71.0	21/12/2013 11:01 72.6	28/11/2013 20:21 64.8
30/11/2013 9:31 71.7	5/12/2013 16:01 69.4	11/12/2013 10:31 72.1	16/12/2013 17:01 70.8	21/12/2013 11:31 70.7	28/11/2013 20:26 64.7
30/11/2013 10:01 71.0	5/12/2013 16:31 70.6	11/12/2013 11:01 72.1	16/12/2013 17:31 71.8	21/12/2013 12:01 67.0	28/11/2013 20:31 64.6
30/11/2013 10:31 71.2	5/12/2013 17:01 70.5	11/12/2013 11:31 71.1	16/12/2013 18:01 70.3	21/12/2013 12:31 69.1	28/11/2013 20:36 64.5
30/11/2013 11:01 70.8	5/12/2013 17:31 69.2	11/12/2013 12:01 70.6	16/12/2013 18:31 55.7	21/12/2013 13:01 68.3	28/11/2013 20:41 64.5
30/11/2013 11:31 68.6	5/12/2013 18:01 67.6	11/12/2013 12:31 70.8	17/12/2013 7:01 56.7	21/12/2013 13:31 72.1	28/11/2013 20:46 64.8
30/11/2013 12:01 67.8	5/12/2013 18:31 66.4	11/12/2013 13:01 71.6	17/12/2013 7:31 70.4	21/12/2013 14:01 73.1	28/11/2013 20:51 64.7
30/11/2013 12:31 70.3	6/12/2013 7:01 55.4	11/12/2013 13:31 71.1	17/12/2013 8:01 71.6	21/12/2013 14:31 72.5	28/11/2013 20:56 64.0
30/11/2013 13:01 73.6	6/12/2013 7:31 70.6	11/12/2013 14:01 71.4	17/12/2013 8:31 71.9	21/12/2013 15:01 71.8	28/11/2013 21:01 64.1
30/11/2013 13:31 75.9	6/12/2013 8:01 70.7	11/12/2013 14:31 70.4	17/12/2013 9:01 73.1	21/12/2013 15:31 69.7	28/11/2013 21:06 63.9
30/11/2013 14:01 74.1	6/12/2013 8:31 70.3	11/12/2013 15:01 71.7	17/12/2013 9:31 73.1	21/12/2013 16:01 71.6	28/11/2013 21:11 63.9
30/11/2013 14:31 71.3	6/12/2013 9:01 71.1	11/12/2013 15:31 70.4	17/12/2013 10:01 72.9	21/12/2013 16:31 71.6	28/11/2013 21:16 64.3
30/11/2013 15:01 71.2	6/12/2013 9:31 71.3	11/12/2013 16:01 71.1	17/12/2013 10:31 72.3	21/12/2013 17:01 71.4	28/11/2013 21:21 64.0
30/11/2013 15:31 71.1	6/12/2013 10:01 71.5	11/12/2013 16:31 71.0	17/12/2013 11:01 72.6	21/12/2013 17:31 69.7	28/11/2013 21:26 64.1
30/11/2013 16:01 69.9	6/12/2013 10:31 71.1	11/12/2013 17:01 70.7	17/12/2013 11:31 71.2	21/12/2013 18:01 68.1	28/11/2013 21:31 63.8
30/11/2013 16:31 70.5	6/12/2013 11:01 70.8	11/12/2013 17:31 70.0	17/12/2013 12:01 69.8	21/12/2013 18:31 61.6	28/11/2013 21:36 64.0
30/11/2013 17:01 70.7	6/12/2013 11:31 69.9	11/12/2013 18:01 68.4	17/12/2013 12:31 70.1	23/12/2013 7:01 56.4	28/11/2013 21:41 64.5
30/11/2013 17:31 69.6	6/12/2013 12:01 67.0	11/12/2013 18:31 58.0	17/12/2013 13:01 70.9	23/12/2013 7:31 71.5	28/11/2013 21:46 64.2
30/11/2013 18:01 66.6	6/12/2013 12:31 68.0	12/12/2013 7:01 67.0	17/12/2013 13:31 71.7	23/12/2013 8:01 71.7	28/11/2013 21:51 64.2
30/11/2013 18:31 66.4	6/12/2013 13:01 70.4	12/12/2013 7:31 70.9	17/12/2013 14:01 72.2	23/12/2013 8:31 73.0	28/11/2013 21:56 64.3
2/12/2013 7:01 67.1	6/12/2013 13:31 70.9	12/12/2013 8:01 71.4	17/12/2013 14:31 72.0	23/12/2013 9:01 73.3	28/11/2013 22:01 63.8
2/12/2013 7:31 71.4	6/12/2013 14:01 71.3	12/12/2013 8:31 71.3	17/12/2013 15:01 72.4	23/12/2013 9:31 73.4	28/11/2013 22:06 64.5
2/12/2013 8:01 71.4	6/12/2013 14:31 71.8	12/12/2013 9:01 69.1	17/12/2013 15:31 70.1	23/12/2013 10:01 73.7	28/11/2013 22:11 63.9
2/12/2013 8:31 70.5	6/12/2013 15:01 71.2	12/12/2013 9:31 70.0	17/12/2013 16:01 72.4	23/12/2013 10:31 73.6	28/11/2013 22:16 64.2
2/12/2013 9:01 71.2	6/12/2013 15:31 70.8	12/12/2013 10:01 70.0	17/12/2013 16:31 73.2	23/12/2013 11:01 72.8	28/11/2013 22:21 64.5
2/12/2013 9:31 71.9	6/12/2013 16:01 71.6	12/12/2013 10:31 71.9	17/12/2013 17:01 72.8	23/12/2013 11:31 71.2	28/11/2013 22:26 64.2
2/12/2013 10:01 71.1	6/12/2013 16:31 71.4	12/12/2013 11:01 70.8	17/12/2013 17:31 73.1	23/12/2013 12:01 71.1	28/11/2013 22:31 63.9
2/12/2013 10:31 72.0	6/12/2013 17:01 72.3	12/12/2013 11:31 69.6	17/12/2013 18:01 72.4	23/12/2013 12:31 71.6	28/11/2013 22:36 64.1
2/12/2013 11:01 70.9	6/12/2013 17:31 72.8	12/12/2013 12:01 68.3	17/12/2013 18:31 64.3	23/12/2013 13:01 72.2	28/11/2013 22:41 64.9
2/12/2013 11:31 68.2	6/12/2013 18:01 71.4	12/12/2013 12:31 69.9	18/12/2013 7:01 62.9	23/12/2013 13:31 72.5	28/11/2013 22:46 63.7
2/12/2013 12:01 68.7	6/12/2013 18:31 65.3	12/12/2013 13:01 70.0	18/12/2013 7:31 71.9	23/12/2013 14:01 71.3	28/11/2013 22:51 64.3
2/12/2013 12:31 70.3	7/12/2013 7:01 60.7	12/12/2013 13:31 71.2	18/12/2013 8:01 72.9	23/12/2013 14:31 70.2	28/11/2013 22:56 64.1
2/12/2013 13:01 71.0	7/12/2013 7:31 70.6	12/12/2013 14:01 70.2	18/12/2013 8:31 72.9	23/12/2013 15:01 71.0	29/11/2013 19:01 62.9
2/12/2013 13:31 70.9	7/12/2013 8:01 71.4	12/12/2013 14:31 69.3	18/12/2013 9:01 73.1		29/11/2013 19:06 64.5
2/12/2013 14:01 69.9	7/12/2013 8:31 71.9	12/12/2013 15:01 71.0	18/12/2013 9:31 73.1	23/12/2013 15:31 70.4 23/12/2013 16:01 71.6	29/11/2013 19:11 62.1
2/12/2013 14:31 70.7	7/12/2013 9:01 71.9	12/12/2013 15:31 72.7	18/12/2013 10:01 72.7	23/12/2013 16:31 72.1	29/11/2013 19:16 62.3
2/12/2013 15:01 71.5	7/12/2013 9:31 72.2	12/12/2013 16:01 71.9	18/12/2013 10:31 73.1	23/12/2013 17:01 72.5	29/11/2013 19:21 62.8
2/12/2013 15:31 71.7	7/12/2013 10:01 72.0	12/12/2013 16:31 70.8	18/12/2013 11:01 73.9	23/12/2013 17:31 73.0	29/11/2013 19:26 63.4
2/12/2013 16:01 72.8	7/12/2013 10:31 72.7	12/12/2013 17:01 70.4	18/12/2013 11:31 72.8	23/12/2013 18:01 69.5	29/11/2013 19:31 63.6
2/12/2013 16:31 72.4	7/12/2013 11:01 72.2	12/12/2013 17:31 70.0	18/12/2013 12:01 71.9	23/12/2013 18:31 50.0	29/11/2013 19:36 64.0
2/12/2013 17:01 72.2	7/12/2013 11:31 70.9	12/12/2013 18:01 67.3	18/12/2013 12:31 71.8	24/12/2013 7:01 59.9	29/11/2013 19:41 64.7
2/12/2013 17:31 71.9	7/12/2013 12:01 70.1	12/12/2013 18:31 66.0	18/12/2013 13:01 72.2	24/12/2013 7:31 71.0	29/11/2013 19:46 64.6
2/12/2013 18:01 68.2	7/12/2013 12:31 72.2	13/12/2013 7:01 59.4	18/12/2013 13:31 73.2	24/12/2013 8:01 72.0	29/11/2013 19:51 64.8
2/12/2013 18:31 67.1 3/12/2013 7:01 54.6	7/12/2013 12:31 72:2 7/12/2013 13:01 72:0 7/12/2013 13:31 73:7	13/12/2013 7:01 53:4 13/12/2013 7:31 71.4 13/12/2013 8:01 72.9	18/12/2013 14:01 72.9 18/12/2013 14:31 73.0	24/12/2013 8:31 72.7 24/12/2013 9:01 72.2	29/11/2013 19:56 64.4 29/11/2013 20:01 64.3
3/12/2013 7:31 71.0	7/12/2013 14:01 72.8	13/12/2013 8:31 72.8	18/12/2013 15:01 73.3	24/12/2013 9:31 71.0	29/11/2013 20:06 64.3
3/12/2013 8:01 71.7	7/12/2013 14:31 72.3	13/12/2013 9:01 72.5	18/12/2013 15:31 72.6	24/12/2013 10:01 71.2	29/11/2013 20:11 64.3
3/12/2013 8:31 71.6	7/12/2013 15:01 72.6	13/12/2013 9:31 72.8	18/12/2013 16:01 73.0	24/12/2013 10:31 71.3	29/11/2013 20:16 64.2
3/12/2013 9:01 70.6	7/12/2013 15:31 71.9	13/12/2013 10:01 72.6	18/12/2013 16:31 71.7	24/12/2013 11:01 71.7	29/11/2013 20:21 64.0
3/12/2013 9:31 70.6	7/12/2013 16:01 71.8	13/12/2013 10:31 73.4	18/12/2013 17:01 71.5	24/12/2013 11:31 70.4	29/11/2013 20:26 64.3
3/12/2013 10:01 70.9	7/12/2013 16:31 71.2	13/12/2013 11:01 72.8	18/12/2013 17:31 71.6	24/12/2013 12:01 70.3	29/11/2013 20:31 63.8
3/12/2013 10:31 72.5	7/12/2013 17:01 70.2	13/12/2013 11:31 71.7	18/12/2013 18:01 71.1	24/12/2013 12:31 72.2	29/11/2013 20:36 63.9
3/12/2013 11:01 72.4	7/12/2013 17:31 70.3	13/12/2013 12:01 70.9	18/12/2013 18:31 64.5	24/12/2013 13:01 72.1	29/11/2013 20:41 64.0
3/12/2013 11:31 70.7	7/12/2013 18:01 69.3	13/12/2013 12:31 71.6	19/12/2013 7:01 67.1	24/12/2013 13:31 72.7	29/11/2013 20:46 63.7
	-		-	•	

Deal time Naine Date	DTNO- (Hann Kann Flackis Cont.				
Real-time Noise Data 29/11/2013 20:51 63.8	RTN2a (Hong Kong Electric Cent 1/12/2013 9:56 63.1	<u>re)</u> 1/12/2013 19:01 63.1	3/12/2013 20:06 64.1	5/12/2013 21:11 63.8	7/12/2013 22:16 62.6
29/11/2013 20:56 63.8	1/12/2013 10:01 63.1	1/12/2013 19:06 63.4	3/12/2013 20:11 64.3	5/12/2013 21:16 63.6	7/12/2013 22:21 63.3
29/11/2013 21:01 63.5	1/12/2013 10:06 63.2	1/12/2013 19:11 63.5	3/12/2013 20:16 63.9	5/12/2013 21:21 63.8	7/12/2013 22:26 63.7
29/11/2013 21:06 63.5	1/12/2013 10:00 03:2	1/12/2013 19:11 03:3	3/12/2013 20:21 64.1	5/12/2013 21:26 63.7	7/12/2013 22:31 62.9
29/11/2013 21:11 63.6	1/12/2013 10:16 63.6	1/12/2013 19:21 64.1	3/12/2013 20:26 63.8	5/12/2013 21:31 63.3	7/12/2013 22:36 63.1
29/11/2013 21:16 63.2	1/12/2013 10:21 63.3	1/12/2013 19:26 63.7	3/12/2013 20:31 64.7	5/12/2013 21:36 63.7	7/12/2013 22:41 63.1
29/11/2013 21:21 62.8	1/12/2013 10:26 62.6	1/12/2013 19:31 63.6	3/12/2013 20:36 64.4	5/12/2013 21:41 63.6	7/12/2013 22:46 63.6
29/11/2013 21:26 62.7	1/12/2013 10:31 63.5	1/12/2013 19:36 63.6	3/12/2013 20:41 63.8	5/12/2013 21:46 64.2	7/12/2013 22:51 64.1
29/11/2013 21:31 63.1	1/12/2013 10:36 63.6	1/12/2013 19:41 63.6	3/12/2013 20:46 64.9	5/12/2013 21:51 63.4	7/12/2013 22:56 63.2
29/11/2013 21:36 62.0	1/12/2013 10:41 63.1	1/12/2013 19:46 62.8	3/12/2013 20:51 64.1	5/12/2013 21:56 64.0	8/12/2013 7:01 60.5
29/11/2013 21:41 62.2	1/12/2013 10:46 63.4	1/12/2013 19:51 63.6	3/12/2013 20:56 63.5	5/12/2013 22:01 63.4	8/12/2013 7:06 60.4
29/11/2013 21:46 62.0	1/12/2013 10:51 63.8	1/12/2013 19:56 64.2	3/12/2013 21:01 63.1	5/12/2013 22:06 63.1	8/12/2013 7:11 60.3
29/11/2013 21:51 62.4	1/12/2013 10:56 63.4	1/12/2013 20:01 64.1	3/12/2013 21:06 63.3	5/12/2013 22:11 63.8	8/12/2013 7:16 60.1
29/11/2013 21:56 62.8	1/12/2013 11:01 62.7	1/12/2013 20:06 62.9	3/12/2013 21:11 63.0	5/12/2013 22:16 63.4	8/12/2013 7:21 62.0
29/11/2013 22:01 62.4	1/12/2013 11:06 63.6	1/12/2013 20:11 62.9	3/12/2013 21:16 63.5	5/12/2013 22:21 64.0	8/12/2013 7:26 61.0
29/11/2013 22:06 62.5	1/12/2013 11:11 62.9	1/12/2013 20:16 63.1	3/12/2013 21:21 64.2	5/12/2013 22:26 63.1	8/12/2013 7:31 61.1
29/11/2013 22:11 62.2	1/12/2013 11:16 62.7	1/12/2013 20:21 62.5	3/12/2013 21:26 65.4		8/12/2013 7:36 61.8
29/11/2013 22:11 62:2	1/12/2013 11:10 62:7	1/12/2013 20:26 62.8	3/12/2013 21:31 63.9	5/12/2013 22:31 63.0 5/12/2013 22:36 63.1	8/12/2013 7:41 61.8
29/11/2013 22:21 62.7	1/12/2013 11:26 63.6	1/12/2013 20:31 63.2	3/12/2013 21:36 63.6	5/12/2013 22:41 64.3	8/12/2013 7:46 61.8
29/11/2013 22:26 63.2	1/12/2013 11:31 63.4	1/12/2013 20:36 63.5	3/12/2013 21:41 64.2	5/12/2013 22:46 63.2	8/12/2013 7:51 61.4
29/11/2013 22:31 64.1	1/12/2013 11:36 63.6	1/12/2013 20:41 62.2	3/12/2013 21:46 63.1	5/12/2013 22:51 63.6	8/12/2013 7:56 63.0
29/11/2013 22:36 62.6	1/12/2013 11:41 63.7	1/12/2013 20:46 63.0	3/12/2013 21:51 63.9	5/12/2013 22:56 63.5	8/12/2013 8:01 61.4
29/11/2013 22:41 62.0	1/12/2013 11:46 63.6	1/12/2013 20:51 63.3	3/12/2013 21:56 64.3	6/12/2013 19:01 63.9	8/12/2013 8:06 62.7
29/11/2013 22:46 62.5	1/12/2013 11:51 63.5	1/12/2013 20:56 62.9	3/12/2013 22:01 63.5	6/12/2013 19:06 65.0	8/12/2013 8:11 62.0
29/11/2013 22:51 63.1	1/12/2013 11:56 63.6	1/12/2013 21:01 63.1	3/12/2013 22:06 63.3	6/12/2013 19:11 64.0	8/12/2013 8:16 62.3
29/11/2013 22:56 63.2	1/12/2013 12:01 63.9	1/12/2013 21:06 62.8	3/12/2013 22:11 63.4	6/12/2013 19:16 62.9	8/12/2013 8:21 63.1
30/11/2013 19:01 64.4	1/12/2013 12:06 63.8	1/12/2013 21:11 63.1	3/12/2013 22:16 63.6	6/12/2013 19:21 62.2	8/12/2013 8:26 63.6
30/11/2013 19:06 64.2	1/12/2013 12:11 63.3		3/12/2013 22:21 63.4	6/12/2013 19:26 63.3	8/12/2013 8:31 62.5
30/11/2013 19:11 63.9	1/12/2013 12:16 63.6	1/12/2013 21:16 62.8 1/12/2013 21:21 62.6	3/12/2013 22:26 63.9	6/12/2013 19:31 63.4	8/12/2013 8:36 62.6
30/11/2013 19:16 64.0	1/12/2013 12:21 63.6	1/12/2013 21:26 62.8	3/12/2013 22:31 63.9	6/12/2013 19:36 63.0	8/12/2013 8:41 63.0
30/11/2013 19:21 65.9	1/12/2013 12:26 63.7	1/12/2013 21:31 62.8	3/12/2013 22:36 63.8	6/12/2013 19:41 64.5	8/12/2013 8:46 63.5
30/11/2013 19:26 64.3	1/12/2013 12:31 64.2	1/12/2013 21:36 63.0	3/12/2013 22:41 63.4	6/12/2013 19:46 65.5	8/12/2013 8:51 63.0
30/11/2013 19:31 64.5	1/12/2013 12:36 63.3	1/12/2013 21:41 63.0	3/12/2013 22:46 63.3	6/12/2013 19:51 65.9	8/12/2013 8:56 63.3
30/11/2013 19:36 64.5	1/12/2013 12:41 63.9	1/12/2013 21:46 63.6	3/12/2013 22:51 63.0	6/12/2013 19:56 65.3	8/12/2013 9:01 63.0
30/11/2013 19:41 64.2	1/12/2013 12:46 64.2	1/12/2013 21:51 62.9	3/12/2013 22:56 63.7	6/12/2013 20:01 65.3	8/12/2013 9:06 64.6
30/11/2013 19:46 63.9	1/12/2013 12:51 64.2	1/12/2013 21:56 63.5	4/12/2013 19:01 63.7	6/12/2013 20:06 64.4	8/12/2013 9:11 64.1
30/11/2013 19:51 65.3	1/12/2013 12:56 64.3	1/12/2013 22:01 62.3	4/12/2013 19:06 64.5	6/12/2013 20:11 64.5	8/12/2013 9:16 63.2
30/11/2013 19:56 63.2	1/12/2013 13:01 64.0	1/12/2013 22:06 63.1	4/12/2013 19:11 64.4	6/12/2013 20:16 64.4	8/12/2013 9:21 64.4
30/11/2013 20:01 63.6	1/12/2013 13:06 63.7	1/12/2013 22:11 62.7	4/12/2013 19:16 63.8	6/12/2013 20:21 63.9	8/12/2013 9:26 64.4
30/11/2013 20:06 63.1	1/12/2013 13:11 63.7	1/12/2013 22:16 63.5	4/12/2013 19:21 65.0	6/12/2013 20:26 63.8	8/12/2013 9:31 63.6
30/11/2013 20:11 63.0	1/12/2013 13:16 64.2	1/12/2013 22:21 62.8	4/12/2013 19:26 63.7	6/12/2013 20:31 64.4	8/12/2013 9:36 63.9
30/11/2013 20:16 64.1	1/12/2013 13:21 64.3	1/12/2013 22:26 63.4	4/12/2013 19:31 64.8	6/12/2013 20:36 64.8	8/12/2013 9:41 65.4
30/11/2013 20:21 63.8	1/12/2013 13:26 64.2	1/12/2013 22:31 62.8	4/12/2013 19:36 64.5	6/12/2013 20:41 64.4	8/12/2013 9:46 64.2
30/11/2013 20:26 64.5	1/12/2013 13:31 63.6	1/12/2013 22:36 63.3	4/12/2013 19:41 64.6	6/12/2013 20:46 63.3	8/12/2013 9:51 63.5
30/11/2013 20:31 63.5	1/12/2013 13:36 64.2	1/12/2013 22:41 62.6	4/12/2013 19:46 63.9	6/12/2013 20:51 63.5	8/12/2013 9:56 63.9
30/11/2013 20:36 63.8	1/12/2013 13:41 64.4	1/12/2013 22:46 62.3	4/12/2013 19:51 63.4	6/12/2013 20:56 63.1	8/12/2013 10:01 63.6
30/11/2013 20:41 63.8	1/12/2013 13:46 63.9	1/12/2013 22:51 62.8	4/12/2013 19:56 64.0	6/12/2013 21:01 63.2	8/12/2013 10:06 64.0
30/11/2013 20:46 63.5	1/12/2013 13:51 64.0	1/12/2013 22:56 62.3	4/12/2013 20:01 64.3	6/12/2013 21:06 63.7	8/12/2013 10:11 63.1
30/11/2013 20:51 63.2	1/12/2013 13:56 63.7	2/12/2013 19:01 64.7	4/12/2013 20:06 63.7	6/12/2013 21:11 63.6	8/12/2013 10:16 63.6
30/11/2013 20:56 63.7	1/12/2013 14:01 63.4	2/12/2013 19:06 64.7	4/12/2013 20:11 63.9	6/12/2013 21:16 63.9	8/12/2013 10:21 64.6
30/11/2013 21:01 62.9	1/12/2013 14:06 63.9	2/12/2013 19:11 63.9	4/12/2013 20:16 64.2	6/12/2013 21:21 63.0	8/12/2013 10:26 63.2
30/11/2013 21:06 62.8	1/12/2013 14:11 64.2	2/12/2013 19:16 64.3	4/12/2013 20:21 63.7	6/12/2013 21:26 64.3	8/12/2013 10:31 62.7
30/11/2013 21:11 63.3	1/12/2013 14:16 64.8	2/12/2013 19:21 65.0	4/12/2013 20:26 64.2	6/12/2013 21:31 64.0	8/12/2013 10:36 63.5
30/11/2013 21:16 63.0	1/12/2013 14:10 64.8	2/12/2013 19:26 64.7	4/12/2013 20:31 63.8	6/12/2013 21:36 64.2	8/12/2013 10:41 64.0
30/11/2013 21:21 63.4	1/12/2013 14:26 64.4	2/12/2013 19:31 64.2	4/12/2013 20:36 63.0	6/12/2013 21:41 63.3	8/12/2013 10:46 63.5
30/11/2013 21:26 63.5	1/12/2013 14:31 64.2	2/12/2013 19:36 64.4	4/12/2013 20:41 64.4	6/12/2013 21:46 63.5	8/12/2013 10:51 64.0
30/11/2013 21:31 63.2	1/12/2013 14:36 63.8	2/12/2013 19:41 64.5	4/12/2013 20:46 63.6	6/12/2013 21:51 64.1	8/12/2013 10:56 63.4
30/11/2013 21:36 63.5	1/12/2013 14:41 63.7	2/12/2013 19:46 64.4	4/12/2013 20:51 63.5	6/12/2013 21:56 63.3	8/12/2013 11:01 63.3
30/11/2013 21:41 63.0	1/12/2013 14:46 63.8	2/12/2013 19:51 64.5	4/12/2013 20:56 63.8	6/12/2013 22:01 63.5	8/12/2013 11:06 63.3
30/11/2013 21:46 62.9 30/11/2013 21:51 63.3	1/12/2013 14:51 64.1	2/12/2013 19:56 64.4 2/12/2013 20:01 66.3	4/12/2013 21:01 63.0	6/12/2013 22:06 63.3	8/12/2013 11:11 63.3
30/11/2013 21:56 63.1	1/12/2013 14:56 64.3 1/12/2013 15:01 64.1	2/12/2013 20:06 64.0	4/12/2013 21:06 63.2 4/12/2013 21:11 63.3	6/12/2013 22:11 63.4 6/12/2013 22:16 63.6	8/12/2013 11:16 63.1 8/12/2013 11:21 63.7
30/11/2013 22:01 63.6	1/12/2013 15:06 65.0	2/12/2013 20:11 64.3	4/12/2013 21:16 63.8	6/12/2013 22:21 63.9	8/12/2013 11:26 64.4
30/11/2013 22:06 63.0	1/12/2013 15:11 64.2	2/12/2013 20:16 64.5	4/12/2013 21:21 63.6	6/12/2013 22:26 63.5	8/12/2013 11:31 63.6
30/11/2013 22:11 62.8	1/12/2013 15:16 64.0	2/12/2013 20:21 64.2	4/12/2013 21:26 64.1	6/12/2013 22:31 63.9	8/12/2013 11:36 64.0
30/11/2013 22:16 62.9	1/12/2013 15:21 63.9	2/12/2013 20:26 64.5	4/12/2013 21:31 63.4	6/12/2013 22:36 63.5	8/12/2013 11:41 64.4
30/11/2013 22:21 64.0	1/12/2013 15:26 64.6	2/12/2013 20:31 63.9	4/12/2013 21:36 62.7	6/12/2013 22:41 63.6	8/12/2013 11:46 64.4
30/11/2013 22:26 63.2	1/12/2013 15:31 64.4	2/12/2013 20:36 63.7	4/12/2013 21:41 63.6	6/12/2013 22:46 64.2	8/12/2013 11:51 63.1
30/11/2013 22:31 63.2	1/12/2013 15:36 64.2	2/12/2013 20:41 63.2	4/12/2013 21:46 63.6	6/12/2013 22:51 63.5	8/12/2013 11:56 63.3
30/11/2013 22:36 62.5	1/12/2013 15:41 64.2	2/12/2013 20:46 64.1	4/12/2013 21:51 63.9	6/12/2013 22:56 63.4	8/12/2013 12:01 63.7
30/11/2013 22:41 63.2	1/12/2013 15:46 65.6	2/12/2013 20:51 63.6	4/12/2013 21:56 63.2	7/12/2013 19:01 64.5	8/12/2013 12:06 66.0
30/11/2013 22:46 62.8	1/12/2013 15:51 66.3	2/12/2013 20:56 63.9	4/12/2013 22:01 62.3	7/12/2013 19:06 63.7	8/12/2013 12:11 64.2
30/11/2013 22:51 63.3	1/12/2013 15:56 64.3	2/12/2013 21:01 63.2	4/12/2013 22:06 63.0	7/12/2013 19:11 64.3	8/12/2013 12:16 63.5
30/11/2013 22:56 63.0	1/12/2013 16:01 63.7	2/12/2013 21:06 64.5	4/12/2013 22:11 62.4	7/12/2013 19:16 63.8	8/12/2013 12:21 63.8
1/12/2013 7:01 59.1	1/12/2013 16:06 64.3	2/12/2013 21:11 63.9	4/12/2013 22:16 63.0	7/12/2013 19:21 63.3	8/12/2013 12:26 64.2
1/12/2013 7:06 58.0	1/12/2013 16:11 64.2	2/12/2013 21:16 62.9	4/12/2013 22:21 63.4	7/12/2013 19:26 64.1	8/12/2013 12:31 64.0
1/12/2013 7:11 55.6	1/12/2013 16:16 63.7	2/12/2013 21:21 63.3	4/12/2013 22:26 62.9	7/12/2013 19:31 64.5	8/12/2013 12:36 63.6
1/12/2013 7:16 56.0	1/12/2013 16:21 64.7	2/12/2013 21:26 63.7	4/12/2013 22:31 63.4	7/12/2013 19:36 66.9	8/12/2013 12:41 64.2
1/12/2013 7:21 63.1	1/12/2013 16:26 65.6	2/12/2013 21:31 63.0	4/12/2013 22:36 63.1	7/12/2013 19:41 66.7	8/12/2013 12:46 64.1
1/12/2013 7:26 57.7	1/12/2013 16:31 64.1	2/12/2013 21:36 63.5	4/12/2013 22:41 63.0	7/12/2013 19:46 64.7	8/12/2013 12:51 64.7
1/12/2013 7:31 57.1	1/12/2013 16:36 64.5	2/12/2013 21:41 64.0	4/12/2013 22:46 62.9	7/12/2013 19:51 65.7	8/12/2013 12:56 63.4
1/12/2013 7:36 58.0	1/12/2013 16:41 64.5	2/12/2013 21:46 63.6	4/12/2013 22:51 63.5	7/12/2013 19:56 63.7	8/12/2013 13:01 63.8
1/12/2013 7:41 57.3	1/12/2013 16:46 64.4	2/12/2013 21:51 63.4	4/12/2013 22:56 63.2	7/12/2013 20:01 63.9	8/12/2013 13:06 63.8
1/12/2013 7:46 59.7	1/12/2013 16:51 63.8	2/12/2013 21:56 63.9	5/12/2013 19:01 63.0	7/12/2013 20:06 63.8	8/12/2013 13:11 63.4
1/12/2013 7:51 58.9	1/12/2013 16:56 64.1	2/12/2013 22:01 63.6	5/12/2013 19:06 62.6	7/12/2013 20:11 63.3	8/12/2013 13:16 64.3
1/12/2013 7:56 57.8	1/12/2013 17:01 63.9	2/12/2013 22:06 63.3	5/12/2013 19:11 62.8	7/12/2013 20:16 63.6	8/12/2013 13:21 63.7
1/12/2013 8:01 58.7	1/12/2013 17:06 63.7	2/12/2013 22:11 63.3	5/12/2013 19:16 62.9	7/12/2013 20:21 63.6	8/12/2013 13:26 63.2
1/12/2013 8:06 61.6	1/12/2013 17:11 64.1	2/12/2013 22:16 63.8	5/12/2013 19:21 63.9	7/12/2013 20:26 63.5	8/12/2013 13:31 63.7
1/12/2013 8:11 59.7	1/12/2013 17:16 64.2	2/12/2013 22:21 63.0	5/12/2013 19:26 64.5	7/12/2013 20:31 63.5	8/12/2013 13:36 63.2
1/12/2013 8:16 59.8	1/12/2013 17:21 64.3	2/12/2013 22:26 63.6	5/12/2013 19:31 64.5	7/12/2013 20:36 63.8	8/12/2013 13:41 63.7
1/12/2013 8:21 62.3	1/12/2013 17:26 64.5	2/12/2013 22:31 63.3	5/12/2013 19:36 63.8	7/12/2013 20:41 63.4	8/12/2013 13:46 64.5
1/12/2013 8:26 61.3	1/12/2013 17:31 64.2	2/12/2013 22:36 62.8	5/12/2013 19:41 64.0	7/12/2013 20:46 63.4	8/12/2013 13:51 64.8
1/12/2013 8:31 61.1	1/12/2013 17:36 64.0	2/12/2013 22:41 62.7	5/12/2013 19:46 63.6	7/12/2013 20:51 65.0	8/12/2013 13:56 63.8
1/12/2013 8:36 62.2	1/12/2013 17:41 63.6	2/12/2013 22:46 63.0	5/12/2013 19:51 64.3	7/12/2013 20:56 63.4	8/12/2013 14:01 63.8
1/12/2013 8:41 62.0	1/12/2013 17:46 63.9	2/12/2013 22:51 62.8	5/12/2013 19:56 64.1	7/12/2013 21:01 63.5	8/12/2013 14:06 63.1
1/12/2013 8:46 61.0	1/12/2013 17:51 63.8	2/12/2013 22:56 62.8	5/12/2013 20:01 64.3	7/12/2013 21:06 65.1	8/12/2013 14:11 63.7
1/12/2013 8:51 61.2	1/12/2013 17:56 64.0	3/12/2013 19:01 63.1	5/12/2013 20:06 63.9	7/12/2013 21:11 63.4	8/12/2013 14:16 63.6
1/12/2013 8:56 61.4	1/12/2013 18:01 64.0	3/12/2013 19:06 64.6	5/12/2013 20:11 64.7	7/12/2013 21:16 63.8	8/12/2013 14:21 64.3
1/12/2013 9:01 62.6	1/12/2013 18:06 64.2	3/12/2013 19:11 64.1	5/12/2013 20:16 63.7	7/12/2013 21:21 63.7	8/12/2013 14:26 63.8
1/12/2013 9:06 61.4	1/12/2013 18:11 64.5	3/12/2013 19:16 64.7	5/12/2013 20:21 64.5	7/12/2013 21:26 63.6	8/12/2013 14:31 63.5
1/12/2013 9:11 61.5	1/12/2013 18:16 63.3	3/12/2013 19:21 64.4 3/12/2013 19:26 64.2	5/12/2013 20:26 64.5	7/12/2013 21:31 63.1 7/12/2013 21:36 64.3	8/12/2013 14:36 63.8
1/12/2013 9:21 63.4	1/12/2013 18:21 62.8 1/12/2013 18:26 63.0	3/12/2013 19:31 65.5	5/12/2013 20:31 64.1 5/12/2013 20:36 63.9	7/12/2013 21:41 63.4	8/12/2013 14:41 64.0 8/12/2013 14:46 64.8
1/12/2013 9:26 64.6	1/12/2013 18:31 63.1	3/12/2013 19:36 64.2	5/12/2013 20:41 63.6	7/12/2013 21:46 63.5	8/12/2013 14:51 64.3
1/12/2013 9:31 63.6	1/12/2013 18:36 63.0	3/12/2013 19:41 64.1	5/12/2013 20:46 63.2	7/12/2013 21:51 63.7	8/12/2013 14:56 64.4
1/12/2013 9:36 63.9	1/12/2013 18:41 62.1	3/12/2013 19:46 64.6	5/12/2013 20:51 63.9	7/12/2013 21:56 63.5	8/12/2013 15:01 64.3
1/12/2013 9:41 63.5	1/12/2013 18:46 62.4	3/12/2013 19:51 65.2	5/12/2013 20:56 63.7	7/12/2013 22:01 63.4	8/12/2013 15:06 64.1
1/12/2013 9:46 63.4	1/12/2013 18:51 62.4	3/12/2013 19:56 63.8	5/12/2013 21:01 64.9	7/12/2013 22:06 62.6	8/12/2013 15:11 63.7
1/12/2013 9:51 63.6	1/12/2013 18:56 62.8	3/12/2013 20:01 63.8	5/12/2013 21:06 63.4	7/12/2013 22:11 63.3	8/12/2013 15:16 64.0

Real-time Noise Data 8/12/2013 15:21 64.1	RTN2a (Hong Kong Electric Cent 9/12/2013 20:26 64.4	re) 11/12/2013 21:31 63.3	13/12/2013 22:36 65.3	15/12/2013 11:41 66.6	15/12/2013 20:46 65.5
8/12/2013 15:26 63.9	9/12/2013 20:31 63.0	11/12/2013 21:36 63.6	13/12/2013 22:41 63.4	15/12/2013 11:46 66.6	15/12/2013 20:51 65.6
8/12/2013 15:31 63.8	9/12/2013 20:36 64.1	11/12/2013 21:41 64.4	13/12/2013 22:46 63.5	15/12/2013 11:51 66.5	15/12/2013 20:56 65.3
8/12/2013 15:36 64.0	9/12/2013 20:41 63.1	11/12/2013 21:46 64.2	13/12/2013 22:51 63.8	15/12/2013 11:56 65.1	15/12/2013 21:01 64.6
8/12/2013 15:41 64.5	9/12/2013 20:46 63.2	11/12/2013 21:51 64.5	13/12/2013 22:56 63.4	15/12/2013 12:01 65.2	15/12/2013 21:06 65.6
8/12/2013 15:46 64.4	9/12/2013 20:51 62.9	11/12/2013 21:56 63.6	14/12/2013 19:01 63.7	15/12/2013 12:06 66.4	15/12/2013 21:11 65.6
8/12/2013 15:51 63.7	9/12/2013 20:56 61.9	11/12/2013 22:01 63.0	14/12/2013 19:06 63.4	15/12/2013 12:11 66.7	15/12/2013 21:16 65.7
8/12/2013 15:56 63.8	9/12/2013 21:01 63.5	11/12/2013 22:06 63.4	14/12/2013 19:11 63.0	15/12/2013 12:16 66.4	15/12/2013 21:21 64.9
8/12/2013 16:01 64.3	9/12/2013 21:06 63.4	11/12/2013 22:11 63.6	14/12/2013 19:16 64.0	15/12/2013 12:21 67.3	15/12/2013 21:26 65.7
8/12/2013 16:06 64.5	9/12/2013 21:11 63.1	11/12/2013 22:16 63.8	14/12/2013 19:21 63.5	15/12/2013 12:26 65.6	15/12/2013 21:31 64.9
8/12/2013 16:11 63.9	9/12/2013 21:16 62.9	11/12/2013 22:21 63.5	14/12/2013 19:26 63.3	15/12/2013 12:31 66.0	15/12/2013 21:36 65.3
8/12/2013 16:16 63.6	9/12/2013 21:21 62.8	11/12/2013 22:26 63.1	14/12/2013 19:31 63.5	15/12/2013 12:36 66.9	15/12/2013 21:41 65.1
8/12/2013 16:21 65.3	9/12/2013 21:26 62.6	11/12/2013 22:31 63.5	14/12/2013 19:36 62.8	15/12/2013 12:41 65.4	15/12/2013 21:46 64.8
8/12/2013 16:26 64.5	9/12/2013 21:31 62.8	11/12/2013 22:36 63.8	14/12/2013 19:41 63.6	15/12/2013 12:46 65.2	15/12/2013 21:51 65.1
8/12/2013 16:31 64.8	9/12/2013 21:36 64.3	11/12/2013 22:41 63.6	14/12/2013 19:46 64.0	15/12/2013 12:51 66.4	15/12/2013 21:56 64.6
8/12/2013 16:36 64.4	9/12/2013 21:41 63.1	11/12/2013 22:46 64.3	14/12/2013 19:51 64.1	15/12/2013 12:56 66.2	15/12/2013 22:01 64.4
8/12/2013 16:41 63.9	9/12/2013 21:46 62.4	11/12/2013 22:51 64.1	14/12/2013 19:56 64.4	15/12/2013 13:01 65.5	15/12/2013 22:06 63.9
8/12/2013 16:46 63.6	9/12/2013 21:51 63.1	11/12/2013 22:56 63.1	14/12/2013 20:01 64.4	15/12/2013 13:06 66.8	15/12/2013 22:11 64.3
8/12/2013 16:51 64.5	9/12/2013 21:56 62.0	12/12/2013 19:01 62.9	14/12/2013 20:06 64.4	15/12/2013 13:11 66.0	15/12/2013 22:16 64.4
8/12/2013 16:56 64.4	9/12/2013 22:01 62.1	12/12/2013 19:06 63.6	14/12/2013 20:11 64.0	15/12/2013 13:16 66.3	15/12/2013 22:21 64.5
8/12/2013 17:01 64.2	9/12/2013 22:06 63.3	12/12/2013 19:11 63.2	14/12/2013 20:16 64.8	15/12/2013 13:21 64.8	15/12/2013 22:26 64.0
8/12/2013 17:06 64.9	9/12/2013 22:11 62.3	12/12/2013 19:16 63.3	14/12/2013 20:21 64.9	15/12/2013 13:26 64.9	15/12/2013 22:31 64.2
8/12/2013 17:11 64.4	9/12/2013 22:16 63.1	12/12/2013 19:21 63.2	14/12/2013 20:26 65.5	15/12/2013 13:31 65.3	15/12/2013 22:36 63.9
8/12/2013 17:16 63.9	9/12/2013 22:21 63.1	12/12/2013 19:26 63.1	14/12/2013 20:31 66.1	15/12/2013 13:36 67.9	15/12/2013 22:41 63.8
8/12/2013 17:21 63.9	9/12/2013 22:26 63.8	12/12/2013 19:31 63.5	14/12/2013 20:36 66.1	15/12/2013 13:41 66.8	15/12/2013 22:46 64.4
8/12/2013 17:26 63.6	9/12/2013 22:31 62.8	12/12/2013 19:36 63.0	14/12/2013 20:41 65.6	15/12/2013 13:46 67.3	15/12/2013 22:51 64.6
8/12/2013 17:31 64.2	9/12/2013 22:36 63.2	12/12/2013 19:41 64.1	14/12/2013 20:46 65.6	15/12/2013 13:51 66.3	15/12/2013 22:56 64.4
8/12/2013 17:36 63.3	9/12/2013 22:41 63.1	12/12/2013 19:46 64.5	14/12/2013 20:51 66.3	15/12/2013 13:56 65.6	16/12/2013 19:01 64.7
8/12/2013 17:41 64.5	9/12/2013 22:46 62.0	12/12/2013 19:51 64.1	14/12/2013 20:56 66.1	15/12/2013 14:01 66.0	16/12/2013 19:06 65.1
8/12/2013 17:46 64.1	9/12/2013 22:51 62.8	12/12/2013 19:56 64.7	14/12/2013 21:01 66.6	15/12/2013 14:06 67.6 15/12/2013 14:11 66.1	16/12/2013 19:11 64.8 16/12/2013 19:16 64.5
8/12/2013 17:51 64.1 8/12/2013 17:56 63.5	9/12/2013 22:56 62.4 10/12/2013 19:01 59.5	12/12/2013 20:01 64.4 12/12/2013 20:06 64.7	14/12/2013 21:06 68.0 14/12/2013 21:11 67.3	15/12/2013 14:11 60:1	16/12/2013 19:21 65.8
8/12/2013 18:01 63.7	10/12/2013 19:06 59.7	12/12/2013 20:11 64.1	14/12/2013 21:16 66.8	15/12/2013 14:21 66.9	16/12/2013 19:26 65.4
8/12/2013 18:06 63.5	10/12/2013 19:11 59.9	12/12/2013 20:16 65.0	14/12/2013 21:21 67.5	15/12/2013 14:26 66.0	16/12/2013 19:31 65.9
8/12/2013 18:11 63.2	10/12/2013 19:16 60.7	12/12/2013 20:21 64.1	14/12/2013 21:26 67.2	15/12/2013 14:31 66.0	16/12/2013 19:36 66.8
8/12/2013 18:16 63.5	10/12/2013 19:21 58.7	12/12/2013 20:26 63.7	14/12/2013 21:31 66.7	15/12/2013 14:36 66.4	16/12/2013 19:41 66.4
8/12/2013 18:21 63.4	10/12/2013 19:26 60.9	12/12/2013 20:31 65.9	14/12/2013 21:36 66.2	15/12/2013 14:41 66.1	16/12/2013 19:46 66.0
8/12/2013 18:26 63.9	10/12/2013 19:31 60.6	12/12/2013 20:36 64.0	14/12/2013 21:41 65.9	15/12/2013 14:46 66.3	16/12/2013 19:51 67.8
8/12/2013 18:31 63.7	10/12/2013 19:36 63.0	12/12/2013 20:41 63.7	14/12/2013 21:46 66.0	15/12/2013 14:51 66.1	16/12/2013 19:56 67.1
8/12/2013 18:36 63.4	10/12/2013 19:41 63.8	12/12/2013 20:46 64.3	14/12/2013 21:51 66.0	15/12/2013 14:56 66.1	16/12/2013 20:01 67.0
8/12/2013 18:41 65.2	10/12/2013 19:46 63.8	12/12/2013 20:51 64.3	14/12/2013 21:56 65.9	15/12/2013 15:01 66.4	16/12/2013 20:06 66.6
8/12/2013 18:46 64.4	10/12/2013 19:51 60.6	12/12/2013 20:56 64.0	14/12/2013 22:01 65.1	15/12/2013 15:06 66.3	16/12/2013 20:11 66.5
8/12/2013 18:51 64.2	10/12/2013 19:56 59.9	12/12/2013 21:01 63.3	14/12/2013 22:06 65.2	15/12/2013 15:11 65.6	16/12/2013 20:16 66.7
8/12/2013 18:56 64.4	10/12/2013 20:01 58.9	12/12/2013 21:06 63.5	14/12/2013 22:11 65.1	15/12/2013 15:16 67.1	16/12/2013 20:21 65.7
8/12/2013 19:01 63.8	10/12/2013 20:06 59.7	12/12/2013 21:11 63.0	14/12/2013 22:16 65.2	15/12/2013 15:21 67.2	16/12/2013 20:26 65.5
8/12/2013 19:06 63.5	10/12/2013 20:11 59.9	12/12/2013 21:16 63.7	14/12/2013 22:21 65.4	15/12/2013 15:26 66.6	16/12/2013 20:31 66.2
8/12/2013 19:11 63.5	10/12/2013 20:16 61.1	12/12/2013 21:21 63.8	14/12/2013 22:26 65.6	15/12/2013 15:31 66.0	16/12/2013 20:36 65.6
8/12/2013 19:16 63.3	10/12/2013 20:21 62.9	12/12/2013 21:26 63.9	14/12/2013 22:31 65.7	15/12/2013 15:36 66.7	16/12/2013 20:41 65.7
8/12/2013 19:21 63.9	10/12/2013 20:26 63.5	12/12/2013 21:31 63.6	14/12/2013 22:36 65.2	15/12/2013 15:41 66.8	16/12/2013 20:46 65.8
8/12/2013 19:26 63.1	10/12/2013 20:31 63.7	12/12/2013 21:36 64.2	14/12/2013 22:41 66.7	15/12/2013 15:46 66.2	16/12/2013 20:51 65.5
8/12/2013 19:31 63.5	10/12/2013 20:36 62.6	12/12/2013 21:41 63.9	14/12/2013 22:46 65.4	15/12/2013 15:51 67.2	16/12/2013 20:56 65.2
8/12/2013 19:36 63.3	10/12/2013 20:41 62.6	12/12/2013 21:46 64.6	14/12/2013 22:51 65.2	15/12/2013 15:56 66.6	16/12/2013 21:01 65.5
8/12/2013 19:41 63.8	10/12/2013 20:46 63.7	12/12/2013 21:51 65.8	14/12/2013 22:56 66.4	15/12/2013 16:01 66.5	16/12/2013 21:06 64.9
8/12/2013 19:46 63.3	10/12/2013 20:51 63.6	12/12/2013 21:56 64.9	15/12/2013 7:01 62.4	15/12/2013 16:06 66.4	16/12/2013 21:11 65.6
8/12/2013 19:51 62.8	10/12/2013 20:56 63.0	12/12/2013 22:01 63.8	15/12/2013 7:06 62.1	15/12/2013 16:11 67.1	16/12/2013 21:16 65.3
8/12/2013 19:56 62.8	10/12/2013 21:01 63.2	12/12/2013 22:06 64.7	15/12/2013 7:11 61.9	15/12/2013 16:16 67.7	16/12/2013 21:21 66.2
8/12/2013 20:01 62.7	10/12/2013 21:06 62.6	12/12/2013 22:11 64.0	15/12/2013 7:16 61.3	15/12/2013 16:21 67.4	16/12/2013 21:26 65.1
8/12/2013 20:06 62.7	10/12/2013 21:11 62.9	12/12/2013 22:16 64.0	15/12/2013 7:21 62.8	15/12/2013 16:26 67.1	16/12/2013 21:31 65.0
8/12/2013 20:11 63.4	10/12/2013 21:16 63.4	12/12/2013 22:21 63.7	15/12/2013 7:26 62.2	15/12/2013 16:31 66.5	16/12/2013 21:36 66.1
8/12/2013 20:16 62.6	10/12/2013 21:21 63.2	12/12/2013 22:26 63.7	15/12/2013 7:31 62.9	15/12/2013 16:36 66.0	16/12/2013 21:41 65.6
8/12/2013 20:21 62.9	10/12/2013 21:26 63.3	12/12/2013 22:31 64.2	15/12/2013 7:36 62.7	15/12/2013 16:41 66.1	16/12/2013 21:46 65.6
8/12/2013 20:26 62.9	10/12/2013 21:31 63.0	12/12/2013 22:36 63.5	15/12/2013 7:41 62.3	15/12/2013 16:46 66.1	16/12/2013 21:51 65.5
8/12/2013 20:31 62.3	10/12/2013 21:36 62.6	12/12/2013 22:41 64.0	15/12/2013 7:46 63.9	15/12/2013 16:51 66.9	16/12/2013 21:56 65.0
8/12/2013 20:36 64.6	10/12/2013 21:41 63.1	12/12/2013 22:46 63.7	15/12/2013 7:51 63.2	15/12/2013 16:56 67.5	16/12/2013 22:01 65.4
8/12/2013 20:41 62.6	10/12/2013 21:46 63.5	12/12/2013 22:51 63.6	15/12/2013 7:56 63.7	15/12/2013 17:01 67.6	16/12/2013 22:06 66.0
8/12/2013 20:46 62.4	10/12/2013 21:51 63.5	12/12/2013 22:56 63.7	15/12/2013 8:01 64.2	15/12/2013 17:06 66.4	16/12/2013 22:11 65.4
8/12/2013 20:51 62.6 8/12/2013 20:56 63.2	10/12/2013 21:56 62.7	13/12/2013 19:01 62.1 13/12/2013 19:06 62.0	15/12/2013 8:06 63.1 15/12/2013 8:11 63.7	15/12/2013 17:11 66.6 15/12/2013 17:16 65.8	16/12/2013 22:16 65.6
8/12/2013 21:01 63.1	10/12/2013 22:01 63.5 10/12/2013 22:06 63.0	13/12/2013 19:11 62.3	15/12/2013 8:16 66.7	15/12/2013 17:21 67.5	16/12/2013 22:21 65.6 16/12/2013 22:26 67.7
8/12/2013 21:06 62.6	10/12/2013 22:11 64.1	13/12/2013 19:16 62.5	15/12/2013 8:21 64.2	15/12/2013 17:26 67.3	16/12/2013 22:31 65.8
8/12/2013 21:11 62.3	10/12/2013 22:16 63.2	13/12/2013 19:21 61.9	15/12/2013 8:26 65.1	15/12/2013 17:31 67.3	16/12/2013 22:36 65.1
8/12/2013 21:16 63.1	10/12/2013 22:21 63.7	13/12/2013 19:26 65.5	15/12/2013 8:31 65.2	15/12/2013 17:36 67.0	16/12/2013 22:41 65.0
8/12/2013 21:21 62.5	10/12/2013 22:26 63.6	13/12/2013 19:31 63.0	15/12/2013 8:36 64.8	15/12/2013 17:41 66.9	16/12/2013 22:46 66.1
8/12/2013 21:26 64.6	10/12/2013 22:31 63.3	13/12/2013 19:36 63.1	15/12/2013 8:41 65.1	15/12/2013 17:46 65.9	16/12/2013 22:51 65.7
8/12/2013 21:31 63.0	10/12/2013 22:36 63.4	13/12/2013 19:41 63.3	15/12/2013 8:46 64.8	15/12/2013 17:51 65.7	16/12/2013 22:56 64.8
8/12/2013 21:36 64.5	10/12/2013 22:41 62.7	13/12/2013 19:46 64.4	15/12/2013 8:51 65.1	15/12/2013 17:56 67.1	17/12/2013 19:01 64.3
8/12/2013 21:41 62.7	10/12/2013 22:46 62.8	13/12/2013 19:51 64.3	15/12/2013 8:56 65.4	15/12/2013 18:01 67.5	17/12/2013 19:06 64.1
8/12/2013 21:46 62.8	10/12/2013 22:51 63.1	13/12/2013 19:56 64.0	15/12/2013 9:01 65.6	15/12/2013 18:06 67.3	17/12/2013 19:11 64.2
8/12/2013 21:50 62.5 8/12/2013 21:56 62.5	10/12/2013 22:56 62.6 11/12/2013 19:01 64.3	13/12/2013 15:56 64:6 13/12/2013 20:01 64:4 13/12/2013 20:06 64:2	15/12/2013 9:06 64.9 15/12/2013 9:11 65.1	15/12/2013 18:11 66.6 15/12/2013 18:16 65.9	17/12/2013 19:11 64.2 17/12/2013 19:16 64.0 17/12/2013 19:21 64.5
8/12/2013 22:01 63.2	11/12/2013 19:06 64.7	13/12/2013 20:11 63.8	15/12/2013 9:16 65.5	15/12/2013 18:21 66.8	17/12/2013 19:26 64.8
8/12/2013 22:06 63.3	11/12/2013 19:11 64.6	13/12/2013 20:16 64.2	15/12/2013 9:21 66.0	15/12/2013 18:26 67.7	17/12/2013 19:31 65.5
8/12/2013 22:11 62.7	11/12/2013 19:16 64.7	13/12/2013 20:21 63.8	15/12/2013 9:26 65.6	15/12/2013 18:31 67.7	17/12/2013 19:36 65.6
8/12/2013 22:16 62.4	11/12/2013 19:21 64.8	13/12/2013 20:26 63.8	15/12/2013 9:31 66.3	15/12/2013 18:36 67.1	17/12/2013 19:41 66.0
8/12/2013 22:21 63.2	11/12/2013 19:26 64.7	13/12/2013 20:31 64.4	15/12/2013 9:36 65.6	15/12/2013 18:41 67.0	17/12/2013 19:46 66.7
8/12/2013 22:26 61.7	11/12/2013 19:31 64.6	13/12/2013 20:36 63.8	15/12/2013 9:41 65.7	15/12/2013 18:46 66.6	17/12/2013 19:51 67.1
8/12/2013 22:31 62.6	11/12/2013 19:36 64.4	13/12/2013 20:41 63.5	15/12/2013 9:46 65.7	15/12/2013 18:51 65.8	17/12/2013 19:56 67.1
8/12/2013 22:36 62.9	11/12/2013 19:41 64.6	13/12/2013 20:46 63.2	15/12/2013 9:51 67.7	15/12/2013 18:56 66.3	17/12/2013 20:01 67.0
8/12/2013 22:41 62.4	11/12/2013 19:46 64.0	13/12/2013 20:51 63.6	15/12/2013 9:56 68.2	15/12/2013 19:01 65.9	17/12/2013 20:06 66.3
8/12/2013 22:46 62.2	11/12/2013 19:51 64.6	13/12/2013 20:56 62.6	15/12/2013 10:01 66.9	15/12/2013 19:06 65.6	17/12/2013 20:11 66.6
8/12/2013 22:51 62.8	11/12/2013 19:56 63.9	13/12/2013 21:01 63.1	15/12/2013 10:06 66.6	15/12/2013 19:11 65.6	17/12/2013 20:16 66.8
8/12/2013 22:56 62.6	11/12/2013 20:01 64.7	13/12/2013 21:06 63.2	15/12/2013 10:11 66.0	15/12/2013 19:16 65.3	17/12/2013 20:21 66.1
9/12/2013 19:01 62.3	11/12/2013 20:06 65.2	13/12/2013 21:11 63.2	15/12/2013 10:16 65.5	15/12/2013 19:21 65.5	17/12/2013 20:26 66.3
9/12/2013 19:06 61.5	11/12/2013 20:11 64.1	13/12/2013 21:16 64.0	15/12/2013 10:21 65.9	15/12/2013 19:26 65.4	17/12/2013 20:31 66.4
9/12/2013 19:11 63.3	11/12/2013 20:16 63.8	13/12/2013 21:21 63.1	15/12/2013 10:26 65.9	15/12/2013 19:31 65.6	17/12/2013 20:36 67.2
9/12/2013 19:16 63.0	11/12/2013 20:21 63.8	13/12/2013 21:26 63.2	15/12/2013 10:31 65.7	15/12/2013 19:36 65.8	17/12/2013 20:41 67.9
9/12/2013 19:21 63.4	11/12/2013 20:26 64.5	13/12/2013 21:31 64.1	15/12/2013 10:36 66.0	15/12/2013 19:41 66.0	17/12/2013 20:46 66.1
9/12/2013 19:26 61.9	11/12/2013 20:31 64.4	13/12/2013 21:36 63.3	15/12/2013 10:41 65.9	15/12/2013 19:46 65.2	17/12/2013 20:51 65.5
9/12/2013 19:31 63.6	11/12/2013 20:36 63.3	13/12/2013 21:41 63.6	15/12/2013 10:46 65.6	15/12/2013 19:51 66.3	17/12/2013 20:56 66.3
9/12/2013 19:36 63.7	11/12/2013 20:41 63.4	13/12/2013 21:46 63.0	15/12/2013 10:51 65.5	15/12/2013 19:56 65.5	17/12/2013 21:01 66.0
9/12/2013 19:41 63.7	11/12/2013 20:46 64.0	13/12/2013 21:51 63.6	15/12/2013 10:56 65.0	15/12/2013 20:01 65.9	17/12/2013 21:06 65.7
9/12/2013 19:46 64.2	11/12/2013 20:51 64.0	13/12/2013 21:56 63.3	15/12/2013 11:01 65.5	15/12/2013 20:06 66.1	17/12/2013 21:11 65.6
9/12/2013 19:51 63.7	11/12/2013 20:56 63.7	13/12/2013 22:01 63.3	15/12/2013 11:06 64.6	15/12/2013 20:11 66.3	17/12/2013 21:16 65.7
9/12/2013 19:56 64.3	11/12/2013 21:01 63.3	13/12/2013 22:06 63.4	15/12/2013 11:11 64.3	15/12/2013 20:16 64.6	17/12/2013 21:21 66.4
9/12/2013 20:01 63.1	11/12/2013 21:06 64.1	13/12/2013 22:11 64.0	15/12/2013 11:16 65.3	15/12/2013 20:21 64.7	17/12/2013 21:26 66.1
9/12/2013 20:06 63.0	11/12/2013 21:11 63.4	13/12/2013 22:16 63.8	15/12/2013 11:21 65.9	15/12/2013 20:26 65.2	17/12/2013 21:31 66.0
9/12/2013 20:11 63.1	11/12/2013 21:16 64.3	13/12/2013 22:21 64.8	15/12/2013 11:26 66.8	15/12/2013 20:31 65.9	17/12/2013 21:36 66.5
9/12/2013 20:16 64.0	11/12/2013 21:21 63.7	13/12/2013 22:26 65.3	15/12/2013 11:31 66.0	15/12/2013 20:36 65.4	17/12/2013 21:41 65.8
9/12/2013 20:21 63.4	11/12/2013 21:26 63.8	13/12/2013 22:31 63.8	15/12/2013 11:36 67.2	15/12/2013 20:41 65.3	17/12/2013 21:46 65.6

Real-time Noise Data 17/12/2013 21:51 65.5	RTN2a (Hong Kong Electric Cen 19/12/2013 22:56 62.2	tre) 22/12/2013 8:01 57.9	22/12/2013 17:06 63.3	23/12/2013 22:11 61.9	25/12/2013 11:16 61.4
17/12/2013 21:56 66.5	20/12/2013 19:01 63.8	22/12/2013 8:06 60.0	22/12/2013 17:11 63.7	23/12/2013 22:16 61.9	25/12/2013 11:16 61.4 25/12/2013 11:21 61.7
17/12/2013 22:01 65.5	20/12/2013 19:06 63.4	22/12/2013 8:11 58.5	22/12/2013 17:16 63.9	23/12/2013 22:21 62.9	25/12/2013 11:26 61.1
17/12/2013 22:06 66.2 17/12/2013 22:11 66.6	20/12/2013 19:11 63.8 20/12/2013 19:16 63.9	22/12/2013 8:16 61.0 22/12/2013 8:21 60.6	22/12/2013 17:21 63.7 22/12/2013 17:26 62.8	23/12/2013 22:26 62.5 23/12/2013 22:31 63.2	25/12/2013 11:31 60.2 25/12/2013 11:36 58.6
17/12/2013 22:16 66.1	20/12/2013 19:21 63.8	22/12/2013 8:26 62.0	22/12/2013 17:31 63.1	23/12/2013 22:36 62.7	25/12/2013 11:41 61.0
17/12/2013 22:21 65.7 17/12/2013 22:26 65.5	20/12/2013 19:26 63.5 20/12/2013 19:31 63.6	22/12/2013 8:31 62.8 22/12/2013 8:36 62.5	22/12/2013 17:36 62.7 22/12/2013 17:41 63.3	23/12/2013 22:41 62.2 23/12/2013 22:46 61.0	25/12/2013 11:46 60.9 25/12/2013 11:51 59.5
17/12/2013 22:31 65.8	20/12/2013 19:36 63.1	22/12/2013 8:41 61.1	22/12/2013 17:46 62.3	23/12/2013 22:51 60.8	25/12/2013 11:56 60.7
17/12/2013 22:36 65.1 17/12/2013 22:41 66.3	20/12/2013 19:41 63.6 20/12/2013 19:46 63.4	22/12/2013 8:46 62.2 22/12/2013 8:51 62.6	22/12/2013 17:51 63.2 22/12/2013 17:56 62.9	23/12/2013 22:56 61.9 24/12/2013 19:01 63.7	25/12/2013 12:01 60.5 25/12/2013 12:06 59.8
17/12/2013 22:46 65.9	20/12/2013 19:51 64.6	22/12/2013 8:56 61.6	22/12/2013 17:30 02:3	24/12/2013 19:06 63.4	25/12/2013 12:11 61.0
17/12/2013 22:51 65.8 17/12/2013 22:56 66.4	20/12/2013 19:56 64.5 20/12/2013 20:01 65.4	22/12/2013 9:01 61.9 22/12/2013 9:06 62.8	22/12/2013 18:06 62.6 22/12/2013 18:11 62.6	24/12/2013 19:11 63.3 24/12/2013 19:16 62.7	25/12/2013 12:16 61.1 25/12/2013 12:21 60.6
18/12/2013 19:01 61.5	20/12/2013 20:06 64.8	22/12/2013 9:11 63.6	22/12/2013 18:16 63.7	24/12/2013 19:21 62.5	25/12/2013 12:26 61.0
18/12/2013 19:06 62.4 18/12/2013 19:11 62.6	20/12/2013 20:11 65.2 20/12/2013 20:16 65.5	22/12/2013 9:16 63.9 22/12/2013 9:21 63.1	22/12/2013 18:21 62.9 22/12/2013 18:26 63.5	24/12/2013 19:26 62.6 24/12/2013 19:31 63.6	25/12/2013 12:31 61.7 25/12/2013 12:36 60.5
18/12/2013 19:16 62.3	20/12/2013 20:21 64.9	22/12/2013 9:26 63.8	22/12/2013 18:31 63.0	24/12/2013 19:36 62.2	25/12/2013 12:41 66.7
18/12/2013 19:21 62.3 18/12/2013 19:26 63.0	20/12/2013 20:26 65.0 20/12/2013 20:31 64.8	22/12/2013 9:31 64.1 22/12/2013 9:36 63.8	22/12/2013 18:36 62.6 22/12/2013 18:41 62.9	24/12/2013 19:41 63.4 24/12/2013 19:46 62.3	25/12/2013 12:46 60.3 25/12/2013 12:51 60.6
18/12/2013 19:31 62.8	20/12/2013 20:36 64.7	22/12/2013 9:41 63.9	22/12/2013 18:46 62.9	24/12/2013 19:51 62.8	25/12/2013 12:56 61.0
18/12/2013 19:36 63.0	20/12/2013 20:41 65.3	22/12/2013 9:46 64.4	22/12/2013 18:51 64.0 22/12/2013 18:56 62.3	24/12/2013 19:56 62.9 24/12/2013 20:01 61.7	25/12/2013 13:01 62.8
18/12/2013 19:41 63.8 18/12/2013 19:46 64.0	20/12/2013 20:46 64.4 20/12/2013 20:51 64.2	22/12/2013 9:51 64.2 22/12/2013 9:56 64.5	22/12/2013 18:36 62:3	24/12/2013 20:01 61:7	25/12/2013 13:06 59.9 25/12/2013 13:11 60.9
18/12/2013 19:51 64.3 18/12/2013 19:56 64.1	20/12/2013 20:56 64.3	22/12/2013 10:01 64.8	22/12/2013 19:06 63.1	24/12/2013 20:11 62.1	25/12/2013 13:16 61.5 25/12/2013 13:21 59.5
18/12/2013 19.56 64.1	20/12/2013 21:01 66.5 20/12/2013 21:06 64.9	22/12/2013 10:06 64.1 22/12/2013 10:11 65.4	22/12/2013 19:11 62.1 22/12/2013 19:16 62.4	24/12/2013 20:16 61.4 24/12/2013 20:21 61.9	25/12/2013 13:26 61.4
18/12/2013 20:06 64.8	20/12/2013 21:11 63.5	22/12/2013 10:16 64.5	22/12/2013 19:21 61.5	24/12/2013 20:26 62.3	25/12/2013 13:31 63.1
18/12/2013 20:11 64.6 18/12/2013 20:16 65.0	20/12/2013 21:16 64.3 20/12/2013 21:21 63.5	22/12/2013 10:21 63.8 22/12/2013 10:26 64.2	22/12/2013 19:26 62.2 22/12/2013 19:31 62.7	24/12/2013 20:31 61.9 24/12/2013 20:36 60.7	25/12/2013 13:36 60.9 25/12/2013 13:41 60.9
18/12/2013 20:21 65.2	20/12/2013 21:26 63.9	22/12/2013 10:31 64.5	22/12/2013 19:36 61.3	24/12/2013 20:41 61.8	25/12/2013 13:46 62.1
18/12/2013 20:26 64.7 18/12/2013 20:31 65.2	20/12/2013 21:31 64.6 20/12/2013 21:36 64.5	22/12/2013 10:36 63.7 22/12/2013 10:41 64.8	22/12/2013 19:41 61.6 22/12/2013 19:46 62.1	24/12/2013 20:46 62.5 24/12/2013 20:51 60.0	25/12/2013 13:51 61.1 25/12/2013 13:56 62.3
18/12/2013 20:36 64.2	20/12/2013 21:41 64.4	22/12/2013 10:46 64.5	22/12/2013 19:51 61.1	24/12/2013 20:56 63.3	25/12/2013 14:01 61.6
18/12/2013 20:41 65.6 18/12/2013 20:46 63.4	20/12/2013 21:46 63.4 20/12/2013 21:51 63.3	22/12/2013 10:51 64.5 22/12/2013 10:56 64.4	22/12/2013 19:56 62.6 22/12/2013 20:01 61.4	24/12/2013 21:01 60.2 24/12/2013 21:06 61.1	25/12/2013 14:06 61.6 25/12/2013 14:11 62.5
18/12/2013 20:51 63.9	20/12/2013 21:56 62.9	22/12/2013 11:01 64.4	22/12/2013 20:06 62.8	24/12/2013 21:11 61.6	25/12/2013 14:16 61.2
18/12/2013 20:56 64.2 18/12/2013 21:01 63.7	20/12/2013 22:01 62.5 20/12/2013 22:06 62.9	22/12/2013 11:06 64.4 22/12/2013 11:11 64.1	22/12/2013 20:11 61.4 22/12/2013 20:16 62.6	24/12/2013 21:16 60.7 24/12/2013 21:21 60.0	25/12/2013 14:21 61.9 25/12/2013 14:26 61.0
18/12/2013 21:06 63.7	20/12/2013 22:11 63.6	22/12/2013 11:16 63.6	22/12/2013 20:21 61.8	24/12/2013 21:26 61.2	25/12/2013 14:31 60.2
18/12/2013 21:11 64.3 18/12/2013 21:16 64.1	20/12/2013 22:16 63.7 20/12/2013 22:21 64.2	22/12/2013 11:21 63.6 22/12/2013 11:26 63.6	22/12/2013 20:26 62.2 22/12/2013 20:31 62.5	24/12/2013 21:31 61.1 24/12/2013 21:36 60.9	25/12/2013 14:36 61.5 25/12/2013 14:41 60.8
18/12/2013 21:21 63.1	20/12/2013 22:26 64.0	22/12/2013 11:31 63.6	22/12/2013 20:36 64.8	24/12/2013 21:41 61.8	25/12/2013 14:46 62.8
18/12/2013 21:26 64.4 18/12/2013 21:31 65.1	20/12/2013 22:31 63.6 20/12/2013 22:36 63.4	22/12/2013 11:36 63.0 22/12/2013 11:41 64.2	22/12/2013 20:41 62.2 22/12/2013 20:46 61.7	24/12/2013 21:46 60.9 24/12/2013 21:51 61.8	25/12/2013 14:51 63.2 25/12/2013 14:56 61.0
18/12/2013 21:36 64.0	20/12/2013 22:41 63.7	22/12/2013 11:46 62.8	22/12/2013 20:51 62.3	24/12/2013 21:56 63.0	25/12/2013 15:01 61.3
18/12/2013 21:41 63.9 18/12/2013 21:46 64.6	20/12/2013 22:46 63.2 20/12/2013 22:51 62.8	22/12/2013 11:51 63.7 22/12/2013 11:56 63.0	22/12/2013 20:56 61.3 22/12/2013 21:01 61.8	24/12/2013 22:01 61.2 24/12/2013 22:06 60.5	25/12/2013 15:06 62.9 25/12/2013 15:11 61.9
18/12/2013 21:51 63.9	20/12/2013 22:56 63.5	22/12/2013 12:01 63.8	22/12/2013 21:06 61.8	24/12/2013 22:11 62.5	25/12/2013 15:16 61.4
18/12/2013 21:56 64.8 18/12/2013 22:01 68.3	21/12/2013 19:01 64.3 21/12/2013 19:06 62.0	22/12/2013 12:06 62.7 22/12/2013 12:11 63.1	22/12/2013 21:11 61.7 22/12/2013 21:16 61.7	24/12/2013 22:16 62.6 24/12/2013 22:21 60.2	25/12/2013 15:21 61.4 25/12/2013 15:26 62.1
18/12/2013 22:06 63.2	21/12/2013 19:11 62.6	22/12/2013 12:16 63.0	22/12/2013 21:21 62.7	24/12/2013 22:26 60.9	25/12/2013 15:31 62.7
18/12/2013 22:11 64.7 18/12/2013 22:16 65.7	21/12/2013 19:16 62.6 21/12/2013 19:21 62.4	22/12/2013 12:21 63.4 22/12/2013 12:26 62.8	22/12/2013 21:26 62.2 22/12/2013 21:31 63.4	24/12/2013 22:31 61.3 24/12/2013 22:36 61.2	25/12/2013 15:36 62.2 25/12/2013 15:41 62.7
18/12/2013 22:21 64.4	21/12/2013 19:26 61.6	22/12/2013 12:31 64.7	22/12/2013 21:36 61.1	24/12/2013 22:41 61.1	25/12/2013 15:46 61.9
18/12/2013 22:26 64.2 18/12/2013 22:31 63.5	21/12/2013 19:31 63.3 21/12/2013 19:36 62.8	22/12/2013 12:36 63.4 22/12/2013 12:41 63.5	22/12/2013 21:41 60.9 22/12/2013 21:46 64.3	24/12/2013 22:46 61.2 24/12/2013 22:51 60.9	25/12/2013 15:51 63.1 25/12/2013 15:56 63.7
18/12/2013 22:36 64.1	21/12/2013 19:41 62.7	22/12/2013 12:46 62.9	22/12/2013 21:51 59.4	24/12/2013 22:56 61.1	25/12/2013 16:01 63.1
18/12/2013 22:41 64.0 18/12/2013 22:46 65.0	21/12/2013 19:46 62.2 21/12/2013 19:51 63.1	22/12/2013 12:51 63.4 22/12/2013 12:56 64.2	22/12/2013 21:56 61.2 22/12/2013 22:01 62.2	25/12/2013 7:01 61.4 25/12/2013 7:06 56.0	25/12/2013 16:06 63.0 25/12/2013 16:11 63.2
18/12/2013 22:51 64.5	21/12/2013 19:56 63.8	22/12/2013 13:01 64.7	22/12/2013 22:06 61.1	25/12/2013 7:11 54.9	25/12/2013 16:16 62.3
18/12/2013 22:56 63.9 19/12/2013 19:01 63.0	21/12/2013 20:01 62.5 21/12/2013 20:06 63.2	22/12/2013 13:06 62.5 22/12/2013 13:11 62.3	22/12/2013 22:11 62.2 22/12/2013 22:16 61.3	25/12/2013 7:16 57.1 25/12/2013 7:21 58.4	25/12/2013 16:21 63.1 25/12/2013 16:26 61.0
19/12/2013 19:06 62.3	21/12/2013 20:11 62.8	22/12/2013 13:16 63.2	22/12/2013 22:21 60.7	25/12/2013 7:26 58.4	25/12/2013 16:31 65.3
19/12/2013 19:11 61.4 19/12/2013 19:16 61.9	21/12/2013 20:16 63.1 21/12/2013 20:21 62.2	22/12/2013 13:21 62.6 22/12/2013 13:26 61.4	22/12/2013 22:26 61.5 22/12/2013 22:31 62.5	25/12/2013 7:31 54.1 25/12/2013 7:36 56.0	25/12/2013 16:36 62.9 25/12/2013 16:41 63.0
19/12/2013 19:21 61.6	21/12/2013 20:26 62.3	22/12/2013 13:31 62.2	22/12/2013 22:36 62.9	25/12/2013 7:41 60.2	25/12/2013 16:46 63.1
19/12/2013 19:26 62.2 19/12/2013 19:31 63.7	21/12/2013 20:31 63.6 21/12/2013 20:36 63.8	22/12/2013 13:36 63.0 22/12/2013 13:41 63.4	22/12/2013 22:41 61.7 22/12/2013 22:46 63.3	25/12/2013 7:46 59.3 25/12/2013 7:51 56.9	25/12/2013 16:51 62.3 25/12/2013 16:56 63.0
19/12/2013 19:36 62.6	21/12/2013 20:41 61.6	22/12/2013 13:46 62.3	22/12/2013 22:51 64.9	25/12/2013 7:56 57.5	25/12/2013 17:01 62.2
19/12/2013 19:41 63.7 19/12/2013 19:46 62.5	21/12/2013 20:46 62.3 21/12/2013 20:51 65.5	22/12/2013 13:51 62.8 22/12/2013 13:56 63.0	22/12/2013 22:56 63.5 23/12/2013 19:01 61.3	25/12/2013 8:01 58.4 25/12/2013 8:06 58.5	25/12/2013 17:06 63.1 25/12/2013 17:11 63.0
19/12/2013 19:51 63.5	21/12/2013 20:56 61.6	22/12/2013 14:01 63.2	23/12/2013 19:06 62.3	25/12/2013 8:11 57.1	25/12/2013 17:16 62.6
19/12/2013 19:56 63.4 19/12/2013 20:01 63.6	21/12/2013 21:01 61.3 21/12/2013 21:06 61.7	22/12/2013 14:06 62.4 22/12/2013 14:11 65.8	23/12/2013 19:11 61.6 23/12/2013 19:16 61.8	25/12/2013 8:16 59.7 25/12/2013 8:21 56.6	25/12/2013 17:21 62.0 25/12/2013 17:26 63.0
19/12/2013 20:06 64.5	21/12/2013 21:11 62.2	22/12/2013 14:16 64.9	23/12/2013 19:21 59.8	25/12/2013 8:26 59.6	25/12/2013 17:31 62.2
19/12/2013 20:11 64.2 19/12/2013 20:16 65.2	21/12/2013 21:16 61.5 21/12/2013 21:21 61.9	22/12/2013 14:21 64.5 22/12/2013 14:26 65.0	23/12/2013 19:26 62.3 23/12/2013 19:31 62.4	25/12/2013 8:31 60.9 25/12/2013 8:36 59.9	25/12/2013 17:36 62.6 25/12/2013 17:41 61.7
19/12/2013 20:21 63.8	21/12/2013 21:26 61.7	22/12/2013 14:31 64.7	23/12/2013 19:36 63.5	25/12/2013 8:41 58.9	25/12/2013 17:46 61.2
19/12/2013 20:26 64.7 19/12/2013 20:31 64.5	21/12/2013 21:31 62.5 21/12/2013 21:36 63.3	22/12/2013 14:36 64.6 22/12/2013 14:41 67.0	23/12/2013 19:41 63.0 23/12/2013 19:46 62.4	25/12/2013 8:46 60.6 25/12/2013 8:51 59.1	25/12/2013 17:51 61.6 25/12/2013 17:56 62.0
19/12/2013 20:36 64.3	21/12/2013 21:41 62.2	22/12/2013 14:46 64.0	23/12/2013 19:51 63.2	25/12/2013 8:56 60.3	25/12/2013 18:01 63.5
19/12/2013 20:41 63.8 19/12/2013 20:46 63.5	21/12/2013 21:46 62.9 21/12/2013 21:51 62.5	22/12/2013 14:51 63.9 22/12/2013 14:56 63.2	23/12/2013 19:56 63.0 23/12/2013 20:01 62.3	25/12/2013 9:01 60.0 25/12/2013 9:06 61.9	25/12/2013 18:06 60.9 25/12/2013 18:11 61.4
19/12/2013 20:51 63.3	21/12/2013 21:56 62.5	22/12/2013 15:01 62.7	23/12/2013 20:06 62.8	25/12/2013 9:11 60.5	25/12/2013 18:16 61.7
19/12/2013 20:56 63.8 19/12/2013 21:01 63.5	21/12/2013 22:01 62.9 21/12/2013 22:06 62.2	22/12/2013 15:06 63.0 22/12/2013 15:11 63.6	23/12/2013 20:11 63.5 23/12/2013 20:16 62.0	25/12/2013 9:16 61.6 25/12/2013 9:21 60.5	25/12/2013 18:21 61.4 25/12/2013 18:26 62.9
19/12/2013 21:06 63.2	21/12/2013 22:11 61.5	22/12/2013 15:16 63.5	23/12/2013 20:21 62.5	25/12/2013 9:26 60.2	25/12/2013 18:31 61.9
19/12/2013 21:11 63.2 19/12/2013 21:16 63.6	21/12/2013 22:16 62.3 21/12/2013 22:21 62.5	22/12/2013 15:21 63.9 22/12/2013 15:26 64.6	23/12/2013 20:26 62.3 23/12/2013 20:31 62.1	25/12/2013 9:31 60.3 25/12/2013 9:36 61.8	25/12/2013 18:36 62.2 25/12/2013 18:41 63.1
19/12/2013 21:21 63.4	21/12/2013 22:26 62.5	22/12/2013 15:31 63.7	23/12/2013 20:36 62.0	25/12/2013 9:41 61.9	25/12/2013 18:46 62.9
19/12/2013 21:26 64.1 19/12/2013 21:31 63.8	21/12/2013 22:31 61.3 21/12/2013 22:36 61.7	22/12/2013 15:36 63.7 22/12/2013 15:41 63.3	23/12/2013 20:41 62.1 23/12/2013 20:46 61.4	25/12/2013 9:46 61.3 25/12/2013 9:51 60.6	25/12/2013 18:51 62.4 25/12/2013 18:56 61.8
19/12/2013 21:36 63.3	21/12/2013 22:41 62.8	22/12/2013 15:46 65.1	23/12/2013 20:51 62.8	25/12/2013 9:56 60.2	25/12/2013 19:01 62.3
19/12/2013 21:41 67.9 19/12/2013 21:46 63.8	21/12/2013 22:46 67.6 21/12/2013 22:51 62.7	22/12/2013 15:51 64.0 22/12/2013 15:56 66.3	23/12/2013 20:56 62.2 23/12/2013 21:01 61.9	25/12/2013 10:01 60.2 25/12/2013 10:06 59.6	25/12/2013 19:06 61.2 25/12/2013 19:11 60.7
19/12/2013 21:51 63.4	21/12/2013 22:56 62.0	22/12/2013 16:01 62.8	23/12/2013 21:06 61.8	25/12/2013 10:11 59.7	25/12/2013 19:16 64.5
19/12/2013 21:56 64.0 19/12/2013 22:01 63.4	22/12/2013 7:01 56.5 22/12/2013 7:06 55.6	22/12/2013 16:06 64.2 22/12/2013 16:11 64.3	23/12/2013 21:11 60.9 23/12/2013 21:16 61.7	25/12/2013 10:16 60.1 25/12/2013 10:21 59.9	25/12/2013 19:21 62.5 25/12/2013 19:26 62.4
19/12/2013 22:06 63.1	22/12/2013 7:11 56.0	22/12/2013 16:16 63.3	23/12/2013 21:21 62.4	25/12/2013 10:26 59.6	25/12/2013 19:31 60.8
19/12/2013 22:11 63.4 19/12/2013 22:16 63.7	22/12/2013 7:16 64.6 22/12/2013 7:21 56.0	22/12/2013 16:21 64.5 22/12/2013 16:26 64.0	23/12/2013 21:26 62.4 23/12/2013 21:31 60.9	25/12/2013 10:31 60.7 25/12/2013 10:36 61.1	25/12/2013 19:36 62.9 25/12/2013 19:41 61.5
19/12/2013 22:21 63.4	22/12/2013 7:26 64.6	22/12/2013 16:31 63.1	23/12/2013 21:36 61.9	25/12/2013 10:41 60.2	25/12/2013 19:46 60.3
19/12/2013 22:26 62.7 19/12/2013 22:31 63.5	22/12/2013 7:31 53.2 22/12/2013 7:36 58.5	22/12/2013 16:36 63.6 22/12/2013 16:41 63.1	23/12/2013 21:41 62.0 23/12/2013 21:46 63.7	25/12/2013 10:46 61.8 25/12/2013 10:51 60.5	25/12/2013 19:51 61.7 25/12/2013 19:56 61.8
19/12/2013 22:36 62.7	22/12/2013 7:41 57.0	22/12/2013 16:46 63.2	23/12/2013 21:51 61.1	25/12/2013 10:56 60.2	25/12/2013 20:01 60.7
19/12/2013 22:41 63.9 19/12/2013 22:46 63.1	22/12/2013 7:46 58.8 22/12/2013 7:51 57.2	22/12/2013 16:51 63.5 22/12/2013 16:56 63.2	23/12/2013 21:56 61.5 23/12/2013 22:01 62.8	25/12/2013 11:01 62.1 25/12/2013 11:06 59.3	25/12/2013 20:06 60.6 25/12/2013 20:11 61.6
19/12/2013 22:51 62.8	22/12/2013 7:56 60.7	22/12/2013 10:56 63:2	23/12/2013 22:06 61.2	25/12/2013 11:06 59:3	25/12/2013 20:11 61.8

Real-time Noise Data 25/12/2013 20:21 60.0	RTN2a (Hong Kong Electric Cent 26/12/2013 13:26 61.3	re) 26/12/2013 22:31 60.9	28/11/2013 4:21 58.2	29/11/2013 5:26 55.9	30/11/2013 6:31 60.4
25/12/2013 20:26 60.6	26/12/2013 13:31 61.1	26/12/2013 22:36 61.4	28/11/2013 4:26 60.6	29/11/2013 5:31 54.5	30/11/2013 6:36 61.8
25/12/2013 20:31 61.5	26/12/2013 13:36 60.9	26/12/2013 22:41 61.6	28/11/2013 4:31 59.1	29/11/2013 5:36 57.0	30/11/2013 6:41 63.8
25/12/2013 20:36 60.9	26/12/2013 13:41 61.6	26/12/2013 22:46 64.8	28/11/2013 4:36 58.3	29/11/2013 5:41 57.8	30/11/2013 6:46 61.6
25/12/2013 20:41 60.3	26/12/2013 13:46 61.1	26/12/2013 22:51 60.9	28/11/2013 4:41 57.9	29/11/2013 5:46 57.5	30/11/2013 6:51 62.2
25/12/2013 20:46 60.0	26/12/2013 13:51 61.8	26/12/2013 22:56 60.5	28/11/2013 4:46 56.3	29/11/2013 5:51 58.4	30/11/2013 6:56 61.9
25/12/2013 20:51 60.3	26/12/2013 13:56 60.8	27/12/2013 19:01 60.8	28/11/2013 4:51 57.3	29/11/2013 5:56 57.1	30/11/2013 23:01 64.6
25/12/2013 20:56 60.1	26/12/2013 14:01 60.5	27/12/2013 19:06 61.9	28/11/2013 4:56 58.1	29/11/2013 6:01 57.8	30/11/2013 23:06 64.7
25/12/2013 21:01 60.1	26/12/2013 14:06 62.1	27/12/2013 19:11 62.6	28/11/2013 5:01 58.5	29/11/2013 6:06 59.7	30/11/2013 23:11 64.7
25/12/2013 21:06 61.1	26/12/2013 14:11 60.0	27/12/2013 19:16 62.8	28/11/2013 5:06 58.4	29/11/2013 6:11 58.9	30/11/2013 23:16 64.6
25/12/2013 21:11 60.1	26/12/2013 14:16 61.3	27/12/2013 19:21 60.7	28/11/2013 5:11 58.3	29/11/2013 6:16 60.8	30/11/2013 23:21 64.9
25/12/2013 21:16 62.6	26/12/2013 14:21 61.5	27/12/2013 19:26 62.1	28/11/2013 5:16 60.7	29/11/2013 6:21 61.9	30/11/2013 23:26 65.2
25/12/2013 21:21 60.9	26/12/2013 14:26 61.5	27/12/2013 19:31 64.1	28/11/2013 5:21 61.5	29/11/2013 6:26 62.3	30/11/2013 23:31 64.6
25/12/2013 21:26 62.0	26/12/2013 14:31 62.6	27/12/2013 19:36 61.9	28/11/2013 5:26 61.3	29/11/2013 6:31 62.3	30/11/2013 23:36 64.7
25/12/2013 21:31 60.2	26/12/2013 14:36 62.5	27/12/2013 19:41 63.3	28/11/2013 5:31 61.2	29/11/2013 6:36 63.0	30/11/2013 23:41 64.6
25/12/2013 21:36 61.6	26/12/2013 14:41 61.6	27/12/2013 19:46 62.5	28/11/2013 5:36 61.6	29/11/2013 6:41 63.5	30/11/2013 23:46 64.8
25/12/2013 21:41 61.8	26/12/2013 14:46 61.2	27/12/2013 19:51 64.2	28/11/2013 5:41 60.6	29/11/2013 6:46 63.4	30/11/2013 23:51 64.8
25/12/2013 21:46 61.3	26/12/2013 14:51 61.4	27/12/2013 19:56 63.2	28/11/2013 5:46 60.7	29/11/2013 6:51 63.3	30/11/2013 23:56 64.6
25/12/2013 21:51 61.9	26/12/2013 14:56 61.0	27/12/2013 20:01 63.1	28/11/2013 5:51 59.9	29/11/2013 6:56 63.0	1/12/2013 0:01 64.4
25/12/2013 21:56 61.7	26/12/2013 15:01 61.9	27/12/2013 20:06 62.7	28/11/2013 5:56 59.5	29/11/2013 23:01 64.2	1/12/2013 0:06 64.6
25/12/2013 22:01 61.4	26/12/2013 15:06 61.7	27/12/2013 20:11 62.5	28/11/2013 6:01 61.2	29/11/2013 23:06 64.1	1/12/2013 0:11 64.6
25/12/2013 22:06 61.4	26/12/2013 15:11 61.8	27/12/2013 20:16 62.8	28/11/2013 6:06 61.3	29/11/2013 23:11 63.9	1/12/2013 0:16 64.6
25/12/2013 22:11 62.2	26/12/2013 15:16 62.9	27/12/2013 20:21 61.9	28/11/2013 6:11 61.3	29/11/2013 23:16 64.0	1/12/2013 0:21 64.5
25/12/2013 22:16 61.4	26/12/2013 15:21 61.6	27/12/2013 20:26 61.9	28/11/2013 6:16 62.7	29/11/2013 23:21 64.2	1/12/2013 0:26 64.2
25/12/2013 22:21 61.1	26/12/2013 15:26 61.8	27/12/2013 20:31 62.9	28/11/2013 6:21 62.6	29/11/2013 23:26 64.3	1/12/2013 0:31 64.3
25/12/2013 22:26 62.3	26/12/2013 15:31 61.3 26/12/2013 15:36 61.7	27/12/2013 20:36 61.5	28/11/2013 6:26 63.2	29/11/2013 23:31 64.8 29/11/2013 23:36 64.1	1/12/2013 0:36 64.1
25/12/2013 22:31 61.7 25/12/2013 22:36 61.3	26/12/2013 15:41 63.2	27/12/2013 20:41 62.6 27/12/2013 20:46 65.0	28/11/2013 6:36 64.0	29/11/2013 23:41 63.5	1/12/2013 0:41 63.6 1/12/2013 0:46 63.3
25/12/2013 22:41 61.5	26/12/2013 15:46 62.7	27/12/2013 20:51 61.4	28/11/2013 6:41 64.4	29/11/2013 23:46 63.8	1/12/2013 0:51 63.6
25/12/2013 22:46 60.6	26/12/2013 15:51 62.2	27/12/2013 20:56 60.7	28/11/2013 6:46 64.9	29/11/2013 23:51 63.7	1/12/2013 0:56 64.1
25/12/2013 22:51 61.3	26/12/2013 15:56 63.5	27/12/2013 21:01 61.2	28/11/2013 6:51 65.2	29/11/2013 23:56 63.8	1/12/2013 1:01 63.3
25/12/2013 22:56 62.2	26/12/2013 16:01 62.0	27/12/2013 21:06 61.5	28/11/2013 6:56 65.5	30/11/2013 0:01 63.7	1/12/2013 1:06 63.2
26/12/2013 7:01 52.0	26/12/2013 16:06 62.7	27/12/2013 21:11 61.4	28/11/2013 23:01 64.7	30/11/2013 0:06 63.3	1/12/2013 1:11 62.9
26/12/2013 7:06 54.1	26/12/2013 16:11 61.4	27/12/2013 21:16 60.5	28/11/2013 23:06 64.7	30/11/2013 0:11 62.9	1/12/2013 1:16 63.5
26/12/2013 7:11 48.2	26/12/2013 16:16 61.8	27/12/2013 21:21 60.6	28/11/2013 23:11 65.0	30/11/2013 0:16 63.8	1/12/2013 1:21 64.2
26/12/2013 7:16 61.5	26/12/2013 16:21 62.5	27/12/2013 21:26 60.8	28/11/2013 23:16 64.1	30/11/2013 0:21 63.5	1/12/2013 1:26 63.2
26/12/2013 7:21 61.5	26/12/2013 16:26 62.8	27/12/2013 21:31 60.2	28/11/2013 23:21 64.0	30/11/2013 0:26 63.4	1/12/2013 1:31 62.9
26/12/2013 7:26 54.5	26/12/2013 16:31 62.4	27/12/2013 21:36 60.7	28/11/2013 23:26 63.6	30/11/2013 0:31 63.0	1/12/2013 1:36 62.8
26/12/2013 7:31 54.7	26/12/2013 16:36 62.8	27/12/2013 21:41 61.7	28/11/2013 23:31 64.1	30/11/2013 0:36 62.8	1/12/2013 1:41 62.6
26/12/2013 7:36 52.0	26/12/2013 16:41 62.4	27/12/2013 21:46 61.7	28/11/2013 23:36 63.4	30/11/2013 0:41 62.4	1/12/2013 1:46 64.2
26/12/2013 7:41 58.3	26/12/2013 16:46 62.2	27/12/2013 21:51 60.9	28/11/2013 23:41 64.1	30/11/2013 0:46 63.2	1/12/2013 1:51 62.1
26/12/2013 7:46 61.1	26/12/2013 16:51 61.6	27/12/2013 21:56 62.4	28/11/2013 23:46 64.2	30/11/2013 0:51 62.6	1/12/2013 1:56 62.8
26/12/2013 7:51 53.9	26/12/2013 16:56 62.2	27/12/2013 22:01 60.8	28/11/2013 23:51 64.0	30/11/2013 0:56 62.7	1/12/2013 2:01 62.8
26/12/2013 7:56 57.6	26/12/2013 17:01 61.5	27/12/2013 22:06 59.9	28/11/2013 23:56 63.1	30/11/2013 1:01 62.5	1/12/2013 2:06 62.3
26/12/2013 8:01 61.3	26/12/2013 17:06 61.7	27/12/2013 22:11 60.6	29/11/2013 0:01 63.2	30/11/2013 1:06 62.5	1/12/2013 2:11 62.7
26/12/2013 8:06 57.1	26/12/2013 17:11 61.3	27/12/2013 22:16 61.7	29/11/2013 0:06 63.4	30/11/2013 1:11 62.3	1/12/2013 2:16 61.9
26/12/2013 8:11 58.3	26/12/2013 17:16 61.8	27/12/2013 22:21 61.3	29/11/2013 0:11 64.0	30/11/2013 1:16 62.2	1/12/2013 2:21 62.0
26/12/2013 8:16 57.1	26/12/2013 17:21 62.5	27/12/2013 22:26 61.7	29/11/2013 0:16 63.9	30/11/2013 1:21 62.0	1/12/2013 2:26 62.2
26/12/2013 8:21 57.2	26/12/2013 17:26 62.1	27/12/2013 22:31 61.2	29/11/2013 0:21 62.4	30/11/2013 1:26 62.4	1/12/2013 2:31 62.3
26/12/2013 8:26 58.9	26/12/2013 17:31 62.4	27/12/2013 22:36 61.0	29/11/2013 0:26 62.4	30/11/2013 1:31 62.3	1/12/2013 2:36 62.1
26/12/2013 8:31 56.3	26/12/2013 17:36 61.2	27/12/2013 22:41 60.9	29/11/2013 0:31 61.9	30/11/2013 1:36 61.5	1/12/2013 2:41 61.8
26/12/2013 8:36 60.2	26/12/2013 17:41 61.6	27/12/2013 22:46 61.2	29/11/2013 0:36 62.1	30/11/2013 1:41 61.3	1/12/2013 2:46 61.8
26/12/2013 8:41 58.2	26/12/2013 17:46 64.2	27/12/2013 22:51 60.6	29/11/2013 0:41 61.7	30/11/2013 1:46 61.5	1/12/2013 2:51 61.4
26/12/2013 8:46 58.7	26/12/2013 17:51 62.3	27/12/2013 22:56 62.3	29/11/2013 0:46 63.8	30/11/2013 1:51 61.2	1/12/2013 2:56 60.9
26/12/2013 8:51 60.2	26/12/2013 17:56 63.7		29/11/2013 0:51 60.9	30/11/2013 1:56 61.1	1/12/2013 3:01 61.5
26/12/2013 8:56 59.9	26/12/2013 18:01 61.7	Night time: 23:00-07:00	29/11/2013 0:56 62.1	30/11/2013 2:01 60.8	1/12/2013 3:06 61.3
26/12/2013 9:01 57.9	26/12/2013 18:06 61.7		29/11/2013 1:01 60.4	30/11/2013 2:06 61.3	1/12/2013 3:11 60.9
26/12/2013 9:06 59.8	26/12/2013 18:11 61.5	28/11/2013 0:01 62.9	29/11/2013 1:06 60.4	30/11/2013 2:11 60.0 30/11/2013 2:16 60.6	1/12/2013 3:16 60.6
26/12/2013 9:11 59.9	26/12/2013 18:16 60.3	28/11/2013 0:06 64.6	29/11/2013 1:11 60.3	30/11/2013 2:21 61.0	1/12/2013 3:21 61.2
26/12/2013 9:16 60.9	26/12/2013 18:21 60.7	28/11/2013 0:11 64.4	29/11/2013 1:16 60.4		1/12/2013 3:26 61.0
26/12/2013 9:21 61.3	26/12/2013 18:26 63.7	28/11/2013 0:16 64.0	29/11/2013 1:21 61.0	30/11/2013 2:26 60.3	1/12/2013 3:31 61.5
26/12/2013 9:26 60.6	26/12/2013 18:31 62.3	28/11/2013 0:21 63.9	29/11/2013 1:26 60.0	30/11/2013 2:31 60.3	1/12/2013 3:36 60.5
26/12/2013 9:31 60.5	26/12/2013 18:36 59.3	28/11/2013 0:26 63.9	29/11/2013 1:31 59.9	30/11/2013 2:36 60.4	1/12/2013 3:41 60.3
26/12/2013 9:36 61.0	26/12/2013 18:41 59.7	28/11/2013 0:31 63.9	29/11/2013 1:36 60.0	30/11/2013 2:41 58.9	1/12/2013 3:46 61.1
26/12/2013 9:41 60.6	26/12/2013 18:46 59.9	28/11/2013 0:36 61.1	29/11/2013 1:41 59.3	30/11/2013 2:46 60.7	1/12/2013 3:51 60.9
26/12/2013 9:46 61.3	26/12/2013 18:51 60.1	28/11/2013 0:41 61.2	29/11/2013 1:46 58.5	30/11/2013 2:51 59.6	1/12/2013 3:56 60.6
26/12/2013 9:51 60.4	26/12/2013 18:56 59.5	28/11/2013 0:46 60.5	29/11/2013 1:51 59.4	30/11/2013 2:56 56.0	1/12/2013 4:01 60.7
26/12/2013 9:56 61.7	26/12/2013 19:01 60.6	28/11/2013 0:51 61.3	29/11/2013 1:56 60.1	30/11/2013 3:01 59.1	1/12/2013 4:06 60.6
26/12/2013 10:01 61.3	26/12/2013 19:06 61.6	28/11/2013 0:56 62.4	29/11/2013 2:01 58.0	30/11/2013 3:06 59.2	1/12/2013 4:11 60.4
26/12/2013 10:06 61.0	26/12/2013 19:11 60.7	28/11/2013 1:01 62.0	29/11/2013 2:06 57.8	30/11/2013 3:11 59.1	1/12/2013 4:16 60.1
26/12/2013 10:11 62.0	26/12/2013 19:16 61.6	28/11/2013 1:06 62.2	29/11/2013 2:11 58.8	30/11/2013 3:16 59.8	1/12/2013 4:21 60.1
26/12/2013 10:16 62.1	26/12/2013 19:21 60.3	28/11/2013 1:11 62.2	29/11/2013 2:16 57.0	30/11/2013 3:21 59.5	1/12/2013 4:26 60.7
26/12/2013 10:21 61.4	26/12/2013 19:26 60.7	28/11/2013 1:16 62.1	29/11/2013 2:21 58.8	30/11/2013 3:26 59.0	1/12/2013 4:31 60.8
26/12/2013 10:26 60.5	26/12/2013 19:31 60.5	28/11/2013 1:21 60.0	29/11/2013 2:26 57.8	30/11/2013 3:31 59.1	1/12/2013 4:36 61.0
26/12/2013 10:31 61.0	26/12/2013 19:36 60.8	28/11/2013 1:26 60.0	29/11/2013 2:31 57.9	30/11/2013 3:36 57.7	1/12/2013 4:41 59.8
26/12/2013 10:36 62.0	26/12/2013 19:41 60.6	28/11/2013 1:31 59.6	29/11/2013 2:36 57.3	30/11/2013 3:41 58.4	1/12/2013 4:46 58.1
26/12/2013 10:41 62.1	26/12/2013 19:46 61.1	28/11/2013 1:36 59.6	29/11/2013 2:41 56.6	30/11/2013 3:46 57.6	1/12/2013 4:51 56.9
26/12/2013 10:46 61.5	26/12/2013 19:51 60.0	28/11/2013 1:41 60.2	29/11/2013 2:46 55.0	30/11/2013 3:51 58.1	1/12/2013 4:56 57.8
26/12/2013 10:51 61.9	26/12/2013 19:56 59.7	28/11/2013 1:46 60.0	29/11/2013 2:51 54.8	30/11/2013 3:56 57.8	1/12/2013 5:01 58.0
26/12/2013 10:56 61.3		28/11/2013 1:51 59.3	29/11/2013 2:56 56.2	30/11/2013 4:01 57.9	1/12/2013 5:06 56.9
26/12/2013 11:01 62.5	26/12/2013 20:01 59.5 26/12/2013 20:06 60.3	28/11/2013 1:56 60.1	29/11/2013 3:01 57.3	30/11/2013 4:06 57.4	1/12/2013 5:11 57.5
26/12/2013 11:06 61.8	26/12/2013 20:11 60.7	28/11/2013 2:01 60.3	29/11/2013 3:06 56.2	30/11/2013 4:11 58.3	1/12/2013 5:16 56.8
26/12/2013 11:11 61.1	26/12/2013 20:16 60.7	28/11/2013 2:06 59.4	29/11/2013 3:11 55.9	30/11/2013 4:16 57.6	1/12/2013 5:21 57.4
26/12/2013 11:16 61.9	26/12/2013 20:21 59.2	28/11/2013 2:11 56.2	29/11/2013 3:16 54.0	30/11/2013 4:21 56.5	1/12/2013 5:26 58.4
26/12/2013 11:21 61.8	26/12/2013 20:26 60.4	28/11/2013 2:16 55.0	29/11/2013 3:21 53.5	30/11/2013 4:26 55.4	1/12/2013 5:31 56.9
26/12/2013 11:26 62.7	26/12/2013 20:31 58.7	28/11/2013 2:21 57.0	29/11/2013 3:26 55.5	30/11/2013 4:31 56.3	1/12/2013 5:36 58.0
26/12/2013 11:31 61.5	26/12/2013 20:36 61.1	28/11/2013 2:26 56.5	29/11/2013 3:31 54.9	30/11/2013 4:36 57.0	1/12/2013 5:41 57.3
26/12/2013 11:36 61.4	26/12/2013 20:41 59.9	28/11/2013 2:31 55.6	29/11/2013 3:36 52.6	30/11/2013 4:41 55.5	1/12/2013 5:46 59.4
26/12/2013 11:41 61.3	26/12/2013 20:46 59.6	28/11/2013 2:36 57.9	29/11/2013 3:41 54.3	30/11/2013 4:46 58.4	1/12/2013 5:51 58.3
26/12/2013 11:46 60.9	26/12/2013 20:51 59.3	28/11/2013 2:41 54.7	29/11/2013 3:46 50.5	30/11/2013 4:51 55.9	1/12/2013 5:56 56.6
26/12/2013 11:51 61.8	26/12/2013 20:56 59.8	28/11/2013 2:46 57.2	29/11/2013 3:51 53.1	30/11/2013 4:56 57.0	1/12/2013 6:01 57.7
26/12/2013 11:56 61.0	26/12/2013 21:01 60.7	28/11/2013 2:51 56.7	29/11/2013 3:56 52.8	30/11/2013 5:01 58.5	1/12/2013 6:06 58.7
26/12/2013 12:01 61.3	26/12/2013 21:06 60.4	28/11/2013 2:56 54.6	29/11/2013 4:01 52.0	30/11/2013 5:06 59.4	1/12/2013 6:11 58.0
26/12/2013 12:06 61.4	26/12/2013 21:11 61.4	28/11/2013 3:01 57.6	29/11/2013 4:06 53.4	30/11/2013 5:11 60.0	1/12/2013 6:16 59.2
26/12/2013 12:11 61.8	26/12/2013 21:16 60.2	28/11/2013 3:06 59.4	29/11/2013 4:11 52.4	30/11/2013 5:16 60.6	1/12/2013 6:21 59.1
26/12/2013 12:16 61.5	26/12/2013 21:21 60.6	28/11/2013 3:11 59.4	29/11/2013 4:16 57.0	30/11/2013 5:21 60.5	1/12/2013 6:26 59.7
26/12/2013 12:21 63.6	26/12/2013 21:26 59.9	28/11/2013 3:16 59.5	29/11/2013 4:21 51.5	30/11/2013 5:26 58.8	1/12/2013 6:31 59.7
26/12/2013 12:26 61.5	26/12/2013 21:31 60.0	28/11/2013 3:21 59.3	29/11/2013 4:26 52.8	30/11/2013 5:31 59.5	1/12/2013 6:36 60.2
26/12/2013 12:31 61.5	26/12/2013 21:36 60.9	28/11/2013 3:26 60.5	29/11/2013 4:31 50.9	30/11/2013 5:36 58.4	1/12/2013 6:41 60.8
26/12/2013 12:36 61.0	26/12/2013 21:41 60.9	28/11/2013 3:31 58.3	29/11/2013 4:36 52.2	30/11/2013 5:41 58.3	1/12/2013 6:46 61.2
26/12/2013 12:41 61.4	26/12/2013 21:46 61.1	28/11/2013 3:36 54.7	29/11/2013 4:41 53.9	30/11/2013 5:46 58.8	1/12/2013 6:51 61.6
26/12/2013 12:46 61.6	26/12/2013 21:51 60.5	28/11/2013 3:41 51.5	29/11/2013 4:46 54.7	30/11/2013 5:51 59.2	1/12/2013 6:56 62.4
26/12/2013 12:51 61.4	26/12/2013 21:56 61.2	28/11/2013 3:46 54.8	29/11/2013 4:51 55.1	30/11/2013 5:56 59.2	1/12/2013 23:01 63.7
26/12/2013 12:56 61.4	26/12/2013 22:01 60.7	28/11/2013 3:51 52.4	29/11/2013 4:56 55.0	30/11/2013 6:01 60.9	1/12/2013 23:06 64.0
26/12/2013 13:01 61.5	26/12/2013 22:06 60.2	28/11/2013 3:56 51.5	29/11/2013 5:01 53.5	30/11/2013 6:06 58.9	1/12/2013 23:11 64.7
26/12/2013 13:06 62.3	26/12/2013 22:11 61.8	28/11/2013 4:01 53.0	29/11/2013 5:06 55.4	30/11/2013 6:11 58.2	1/12/2013 23:16 64.2
26/12/2013 13:11 60.5	26/12/2013 22:16 62.5	28/11/2013 4:06 54.8	29/11/2013 5:11 52.2	30/11/2013 6:16 59.8	1/12/2013 23:21 64.2
26/12/2013 13:16 60.6	26/12/2013 22:21 61.2	28/11/2013 4:11 53.6	29/11/2013 5:16 56.0	30/11/2013 6:21 59.4	1/12/2013 23:26 63.4
26/12/2013 13:21 60.9	26/12/2013 22:26 61.4	28/11/2013 4:16 57.4	29/11/2013 5:21 56.6	30/11/2013 6:26 59.9	1/12/2013 23:31 63.9
20/12/2010 10.21 00.8	20/12/2010 22.20 01.4	20/11/2010 4.10 3/.4	20/11/2010 0.21 00.0	30/11/2013 0.20 38.8	1/12/2013 23.31 03.9


Real-time Noise Data 1/12/2013 23:36 64.2	RTN2a (Hong Kong Electric Cent 3/12/2013 0:41 62.5	<u>re)</u> 4/12/2013 1:46 61.1	5/12/2013 2:51 59.9	6/12/2013 3:56 60.0	7/12/2013 5:01 61.3
1/12/2013 23:41 63.0	3/12/2013 0:46 62.6	4/12/2013 1:51 60.7	5/12/2013 2:56 59.9	6/12/2013 4:01 58.7	7/12/2013 5:06 60.9
1/12/2013 23:46 63.5	3/12/2013 0:51 62.3	4/12/2013 1:56 60.9	5/12/2013 3:01 59.4	6/12/2013 4:06 59.6	7/12/2013 5:11 61.8
1/12/2013 23:51 63.5	3/12/2013 0:56 62.6	4/12/2013 2:01 60.6	5/12/2013 3:06 59.3	6/12/2013 4:11 57.8	7/12/2013 5:16 60.7
1/12/2013 23:56 64.2	3/12/2013 1:01 61.7	4/12/2013 2:06 62.0	5/12/2013 3:11 59.8	6/12/2013 4:16 58.7	7/12/2013 5:21 62.1
2/12/2013 0:01 63.0	3/12/2013 1:06 62.4	4/12/2013 2:11 60.4	5/12/2013 3:16 58.2	6/12/2013 4:21 59.5	7/12/2013 5:26 60.8
2/12/2013 0:06 63.5	3/12/2013 1:11 61.2	4/12/2013 2:16 60.8	5/12/2013 3:21 59.1	6/12/2013 4:26 59.7	7/12/2013 5:31 61.4
2/12/2013 0:11 62.5	3/12/2013 1:16 61.6	4/12/2013 2:21 60.3	5/12/2013 3:26 59.2	6/12/2013 4:31 59.1	7/12/2013 5:36 61.2
2/12/2013 0:16 62.6	3/12/2013 1:21 61.4	4/12/2013 2:26 60.6	5/12/2013 3:31 58.4	6/12/2013 4:36 60.0	7/12/2013 5:41 61.3
2/12/2013 0:21 62.9	3/12/2013 1:26 61.7	4/12/2013 2:31 59.8	5/12/2013 3:36 59.5	6/12/2013 4:41 59.2	7/12/2013 5:46 61.2
2/12/2013 0:26 62.8	3/12/2013 1:31 61.9	4/12/2013 2:36 60.4	5/12/2013 3:41 58.4	6/12/2013 4:46 59.2	7/12/2013 5:51 61.3
2/12/2013 0:31 61.9	3/12/2013 1:36 61.4	4/12/2013 2:41 59.8	5/12/2013 3:46 59.2	6/12/2013 4:51 59.3	7/12/2013 5:56 60.9
2/12/2013 0:36 62.2	3/12/2013 1:41 61.7	4/12/2013 2:46 60.6	5/12/2013 3:51 59.3	6/12/2013 4:56 59.7	7/12/2013 6:01 61.5
2/12/2013 0:41 62.8	3/12/2013 1:46 61.3	4/12/2013 2:51 59.6	5/12/2013 3:56 58.4	6/12/2013 5:01 60.0	7/12/2013 6:06 62.1
2/12/2013 0:46 61.9	3/12/2013 1:51 60.9	4/12/2013 2:56 59.5	5/12/2013 4:01 58.7	6/12/2013 5:06 60.5	7/12/2013 6:11 62.3
2/12/2013 0:51 62.5	3/12/2013 1:56 60.5	4/12/2013 3:01 59.0	5/12/2013 4:06 58.7	6/12/2013 5:11 59.9	7/12/2013 6:16 62.5
2/12/2013 0:56 61.4	3/12/2013 2:01 59.9	4/12/2013 3:06 60.2	5/12/2013 4:11 59.0	6/12/2013 5:16 59.7	7/12/2013 6:21 62.3
2/12/2013 1:01 62.2	3/12/2013 2:06 60.5	4/12/2013 3:11 59.8	5/12/2013 4:16 58.8	6/12/2013 5:21 59.9	7/12/2013 6:26 62.4
2/12/2013 1:06 60.7	3/12/2013 2:11 60.7	4/12/2013 3:16 59.5	5/12/2013 4:21 58.8	6/12/2013 5:26 60.6	7/12/2013 6:31 62.8
2/12/2013 1:11 60.8	3/12/2013 2:16 60.5	4/12/2013 3:21 59.2	5/12/2013 4:26 58.5	6/12/2013 5:31 60.6	7/12/2013 6:36 63.2
2/12/2013 1:16 60.9	3/12/2013 2:21 61.1	4/12/2013 3:26 59.3	5/12/2013 4:31 59.0	6/12/2013 5:36 60.1	7/12/2013 6:41 63.5
2/12/2013 1:21 61.1	3/12/2013 2:26 59.9	4/12/2013 3:31 59.7	5/12/2013 4:36 58.7	6/12/2013 5:41 59.9	7/12/2013 6:46 63.3
2/12/2013 1:26 60.7	3/12/2013 2:31 59.7	4/12/2013 3:36 59.7	5/12/2013 4:41 58.3	6/12/2013 5:46 60.8	7/12/2013 6:51 63.6
2/12/2013 1:31 60.7	3/12/2013 2:36 59.3	4/12/2013 3:41 59.0	5/12/2013 4:46 59.2	6/12/2013 5:51 61.7	7/12/2013 6:56 63.8
2/12/2013 1:36 59.3	3/12/2013 2:41 60.3	4/12/2013 3:46 59.4	5/12/2013 4:51 59.1	6/12/2013 5:56 60.8	7/12/2013 23:01 64.5
2/12/2013 1:41 59.9	3/12/2013 2:46 59.5	4/12/2013 3:51 58.9	5/12/2013 4:56 59.1	6/12/2013 6:01 61.8	7/12/2013 23:06 64.5
2/12/2013 1:46 59.8	3/12/2013 2:51 59.8	4/12/2013 3:56 59.4	5/12/2013 5:01 58.9	6/12/2013 6:06 61.8	7/12/2013 23:11 64.7
2/12/2013 1:51 59.9	3/12/2013 2:56 59.4	4/12/2013 4:01 59.0	5/12/2013 5:06 59.2	6/12/2013 6:11 62.5	7/12/2013 23:16 64.7
2/12/2013 1:56 60.0	3/12/2013 3:01 59.5	4/12/2013 4:06 58.5	5/12/2013 5:11 59.5	6/12/2013 6:16 61.8	7/12/2013 23:21 64.8
2/12/2013 2:01 59.2	3/12/2013 3:06 59.8	4/12/2013 4:11 58.6	5/12/2013 5:16 59.6	6/12/2013 6:21 62.1	7/12/2013 23:26 64.8
2/12/2013 2:06 59.1	3/12/2013 3:11 59.2	4/12/2013 4:16 59.3	5/12/2013 5:21 59.8	6/12/2013 6:26 62.5	7/12/2013 23:31 64.5
2/12/2013 2:11 59.7	3/12/2013 3:16 58.6	4/12/2013 4:21 59.1	5/12/2013 5:26 60.0	6/12/2013 6:31 63.1	7/12/2013 23:36 64.9
2/12/2013 2:16 58.9	3/12/2013 3:21 59.2	4/12/2013 4:26 58.6	5/12/2013 5:31 59.0	6/12/2013 6:36 63.1	7/12/2013 23:41 64.5
2/12/2013 2:21 58.4	3/12/2013 3:26 58.8	4/12/2013 4:31 57.9	5/12/2013 5:36 60.2	6/12/2013 6:41 63.5	7/12/2013 23:46 64.7
2/12/2013 2:26 59.0	3/12/2013 3:31 58.4	4/12/2013 4:36 58.8	5/12/2013 5:41 60.4	6/12/2013 6:46 64.2	7/12/2013 23:51 64.8
2/12/2013 2:31 59.6	3/12/2013 3:36 60.3	4/12/2013 4:41 58.0	5/12/2013 5:46 59.5	6/12/2013 6:51 64.1	7/12/2013 23:56 64.4
2/12/2013 2:36 58.8	3/12/2013 3:41 59.0	4/12/2013 4:46 59.3	5/12/2013 5:51 60.9	6/12/2013 6:56 64.4	8/12/2013 0:01 64.5
2/12/2013 2:41 58.9	3/12/2013 3:46 59.0	4/12/2013 4:51 58.3	5/12/2013 5:56 61.1	6/12/2013 23:01 64.9	8/12/2013 0:06 64.2
2/12/2013 2:46 59.5	3/12/2013 3:51 59.0	4/12/2013 4:56 59.1	5/12/2013 6:01 60.9	6/12/2013 23:06 65.0	8/12/2013 0:11 64.5
2/12/2013 2:51 58.2	3/12/2013 3:56 59.2	4/12/2013 5:01 59.3	5/12/2013 6:06 60.8	6/12/2013 23:11 64.9	8/12/2013 0:16 64.1
2/12/2013 2:56 58.7	3/12/2013 4:01 58.0	4/12/2013 5:06 60.0	5/12/2013 6:11 61.7	6/12/2013 23:16 64.8	8/12/2013 0:21 63.9
2/12/2013 3:01 58.0	3/12/2013 4:06 58.7	4/12/2013 5:11 59.2	5/12/2013 6:16 62.1	6/12/2013 23:21 64.9	8/12/2013 0:26 64.1
2/12/2013 3:06 58.2	3/12/2013 4:11 58.7	4/12/2013 5:16 59.6	5/12/2013 6:21 61.7	6/12/2013 23:26 64.4	8/12/2013 0:31 64.4
2/12/2013 3:11 57.8	3/12/2013 4:16 58.3	4/12/2013 5:21 58.8	5/12/2013 6:26 62.7	6/12/2013 23:31 65.1	8/12/2013 0:36 64.2
2/12/2013 3:16 58.5	3/12/2013 4:21 59.5	4/12/2013 5:26 60.1	5/12/2013 6:31 62.7		8/12/2013 0:41 64.0
2/12/2013 3:10 56.5 2/12/2013 3:21 57.7	3/12/2013 4:21 59.5 3/12/2013 4:26 58.8	4/12/2013 5:26 60.1	5/12/2013 6:31 62.7 5/12/2013 6:36 63.2	6/12/2013 23:36 65.1 6/12/2013 23:41 64.8	8/12/2013 0:41 64.0 8/12/2013 0:46 63.5
2/12/2013 3:26 57.7	3/12/2013 4:31 59.3	4/12/2013 5:36 59.8	5/12/2013 6:41 63.5	6/12/2013 23:46 65.3	8/12/2013 0:51 64.1
2/12/2013 3:31 57.8	3/12/2013 4:36 58.4	4/12/2013 5:41 60.9	5/12/2013 6:46 63.9	6/12/2013 23:51 64.9	8/12/2013 0:56 63.4
2/12/2013 3:36 58.1	3/12/2013 4:41 58.9	4/12/2013 5:46 60.5	5/12/2013 6:51 64.3	6/12/2013 23:51 64.9 6/12/2013 23:56 64.6	8/12/2013 1:01 63.2
2/12/2013 3:41 57.2	3/12/2013 4:46 58.9	4/12/2013 5:51 60.6	5/12/2013 6:56 64.8	7/12/2013 0:01 65.1	8/12/2013 1:06 63.4
2/12/2013 3:46 57.5	3/12/2013 4:51 58.9	4/12/2013 5:56 60.9	5/12/2013 23:01 64.9	7/12/2013 0:06 64.8	8/12/2013 1:11 63.4
2/12/2013 3:51 58.5	3/12/2013 4:56 58.7	4/12/2013 6:01 61.5	5/12/2013 23:06 64.8	7/12/2013 0:00 04.8	8/12/2013 1:16 63.6
2/12/2013 3:56 57.9	3/12/2013 5:01 60.3	4/12/2013 6:06 61.8	5/12/2013 23:11 64.9	7/12/2013 0:16 64.7	8/12/2013 1:21 63.4
2/12/2013 4:01 57.9	3/12/2013 5:06 59.2	4/12/2013 6:11 61.6	5/12/2013 23:16 64.6	7/12/2013 0:21 63.8	8/12/2013 1:26 62.8
2/12/2013 4:06 60.7	3/12/2013 5:11 59.5	4/12/2013 6:16 62.0	5/12/2013 23:21 64.5	7/12/2013 0:26 64.7	8/12/2013 1:31 62.3
2/12/2013 4:11 57.5	3/12/2013 5:16 63.4	4/12/2013 6:21 62.1	5/12/2013 23:26 64.4	7/12/2013 0:31 64.5	8/12/2013 1:36 63.0
2/12/2013 4:16 56.6	3/12/2013 5:21 60.5	4/12/2013 6:26 62.9	5/12/2013 23:31 64.4	7/12/2013 0:36 64.2	8/12/2013 1:41 62.3
2/12/2013 4:21 58.7	3/12/2013 5:26 62.3	4/12/2013 6:31 62.6	5/12/2013 23:36 64.6	7/12/2013 0:41 63.4	8/12/2013 1:46 62.5
2/12/2013 4:26 58.5	3/12/2013 5:31 59.4	4/12/2013 6:36 63.3	5/12/2013 23:41 64.3	7/12/2013 0:46 63.5	8/12/2013 1:51 62.3
2/12/2013 4:31 57.3	3/12/2013 5:36 60.3	4/12/2013 6:41 64.2	5/12/2013 23:46 64.5	7/12/2013 0:51 63.6	8/12/2013 1:56 63.0
2/12/2013 4:36 58.1	3/12/2013 5:41 59.9	4/12/2013 6:46 63.8	5/12/2013 23:51 64.7	7/12/2013 0:56 62.7	8/12/2013 2:01 62.1
2/12/2013 4:41 58.1	3/12/2013 5:46 60.4	4/12/2013 6:51 64.1	5/12/2013 23:56 64.0	7/12/2013 1:01 63.5	8/12/2013 2:06 62.7
2/12/2013 4:46 57.6	3/12/2013 5:51 60.9	4/12/2013 6:56 64.8	6/12/2013 0:01 64.1	7/12/2013 1:06 64.1	8/12/2013 2:11 62.5
2/12/2013 4:51 57.3	3/12/2013 5:56 60.4	4/12/2013 23:01 64.5	6/12/2013 0:06 64.2	7/12/2013 1:11 63.3	8/12/2013 2:16 62.4
2/12/2013 4:56 57.9	3/12/2013 6:01 61.3	4/12/2013 23:06 64.3	6/12/2013 0:11 64.1	7/12/2013 1:16 63.5	8/12/2013 2:21 62.0
2/12/2013 5:01 57.2	3/12/2013 6:06 61.6	4/12/2013 23:11 64.0	6/12/2013 0:16 64.0	7/12/2013 1:21 63.3	8/12/2013 2:26 62.2
2/12/2013 5:06 58.9	3/12/2013 6:11 62.1	4/12/2013 23:16 64.8	6/12/2013 0:21 63.7	7/12/2013 1:26 62.9	8/12/2013 2:31 61.7
2/12/2013 5:11 58.7	3/12/2013 6:16 62.7	4/12/2013 23:21 64.5	6/12/2013 0:26 63.0	7/12/2013 1:31 63.2	8/12/2013 2:36 62.0
2/12/2013 5:16 59.6	3/12/2013 6:21 62.2	4/12/2013 23:26 64.6	6/12/2013 0:31 63.2	7/12/2013 1:36 65.3	8/12/2013 2:41 63.9
2/12/2013 5:21 58.1	3/12/2013 6:26 63.0	4/12/2013 23:31 64.3	6/12/2013 0:36 62.9	7/12/2013 1:41 63.1	8/12/2013 2:46 61.5
2/12/2013 5:26 59.6	3/12/2013 6:31 62.5	4/12/2013 23:36 64.5	6/12/2013 0:41 63.2	7/12/2013 1:46 63.0	8/12/2013 2:51 62.8
2/12/2013 5:31 59.1	3/12/2013 6:36 63.6	4/12/2013 23:41 64.3	6/12/2013 0:46 62.9	7/12/2013 1:51 62.9	8/12/2013 2:56 61.8
2/12/2013 5:36 60.0	3/12/2013 6:41 64.0	4/12/2013 23:46 64.2	6/12/2013 0:51 64.3	7/12/2013 1:56 62.9	8/12/2013 3:01 61.9
2/12/2013 5:41 59.6	3/12/2013 6:46 63.8	4/12/2013 23:51 64.9	6/12/2013 0:56 62.8	7/12/2013 2:01 63.0	8/12/2013 3:06 62.1
2/12/2013 5:46 60.5	3/12/2013 6:51 64.3	4/12/2013 23:56 63.9	6/12/2013 1:01 63.5	7/12/2013 2:06 62.9	8/12/2013 3:11 61.2
2/12/2013 5:51 61.1	3/12/2013 6:56 64.6	5/12/2013 0:01 63.8	6/12/2013 1:06 62.7	7/12/2013 2:11 62.4	8/12/2013 3:16 61.4
2/12/2013 5:56 60.3		5/12/2013 0:06 63.8	6/12/2013 1:11 62.3	7/12/2013 2:16 62.4	8/12/2013 3:21 60.8
2/12/2013 5:56 60.3	3/12/2013 23:01 64.3	5/12/2013 0:06 63.8	6/12/2013 1:11 62.3	7/12/2013 2:10 62.4	8/12/2013 3:21 60.8
2/12/2013 6:01 61.4	3/12/2013 23:06 64.9	5/12/2013 0:11 63.7	6/12/2013 1:16 62.5		8/12/2013 3:26 61.0
2/12/2013 6:06 61.1	3/12/2013 23:11 64.8	5/12/2013 0:16 65.6	6/12/2013 1:21 62.3	7/12/2013 2:26 62.8	8/12/2013 3:31 61.0
2/12/2013 6:11 60.9	3/12/2013 23:16 64.3	5/12/2013 0:21 63.8	6/12/2013 1:26 62.3	7/12/2013 2:31 61.6	8/12/2013 3:36 61.1
2/12/2013 6:16 59.4	3/12/2013 23:21 64.3	5/12/2013 0:26 63.9	6/12/2013 1:31 61.6	7/12/2013 2:36 62.4	8/12/2013 3:41 60.1
2/12/2013 6:21 60.8	3/12/2013 23:26 64.4	5/12/2013 0:31 62.8	6/12/2013 1:36 61.9	7/12/2013 2:41 62.1	8/12/2013 3:46 61.0
2/12/2013 6:26 60.9	3/12/2013 23:31 64.6	5/12/2013 0:36 62.7	6/12/2013 1:41 61.3	7/12/2013 2:46 62.6	8/12/2013 3:51 61.1
2/12/2013 6:31 60.9	3/12/2013 23:36 64.3	5/12/2013 0:41 62.9	6/12/2013 1:46 60.8	7/12/2013 2:51 61.6	8/12/2013 3:56 61.1
2/12/2013 6:36 61.3	3/12/2013 23:41 64.8	5/12/2013 0:46 62.3	6/12/2013 1:51 61.0	7/12/2013 2:56 62.1	8/12/2013 4:01 60.7
2/12/2013 6:41 62.5	3/12/2013 23:46 64.7	5/12/2013 0:51 62.6	6/12/2013 1:56 61.3	7/12/2013 3:01 62.4	8/12/2013 4:06 61.2
2/12/2013 6:46 62.9	3/12/2013 23:51 64.6	5/12/2013 0:56 61.8	6/12/2013 2:01 60.9	7/12/2013 3:06 61.7	8/12/2013 4:11 60.6
2/12/2013 6:51 62.8	3/12/2013 23:56 63.7	5/12/2013 1:01 61.6	6/12/2013 2:06 60.5	7/12/2013 3:11 61.4	8/12/2013 4:16 60.8
2/12/2013 6:56 63.9	4/12/2013 0:01 63.4	5/12/2013 1:06 62.9	6/12/2013 2:11 61.2	7/12/2013 3:16 61.0	8/12/2013 4:21 60.9
2/12/2013 23:01 64.2	4/12/2013 0:06 64.1	5/12/2013 1:11 62.3	6/12/2013 2:16 60.5	7/12/2013 3:21 61.1	8/12/2013 4:26 61.0
2/12/2013 23:06 64.6	4/12/2013 0:11 64.0	5/12/2013 1:16 62.1	6/12/2013 2:21 60.4	7/12/2013 3:26 61.1	8/12/2013 4:31 60.4
2/12/2013 23:11 65.6	4/12/2013 0:16 63.7	5/12/2013 1:21 61.6	6/12/2013 2:26 60.2	7/12/2013 3:31 61.2	8/12/2013 4:36 60.8
2/12/2013 23:16 65.8	4/12/2013 0:21 63.4	5/12/2013 1:26 61.5	6/12/2013 2:31 60.7	7/12/2013 3:36 61.5	8/12/2013 4:41 60.5
2/12/2013 23:21 64.0	4/12/2013 0:26 63.2	5/12/2013 1:31 61.6	6/12/2013 2:36 60.0	7/12/2013 3:41 61.2	8/12/2013 4:46 60.3
2/12/2013 23:26 63.5	4/12/2013 0:31 63.2	5/12/2013 1:36 60.6	6/12/2013 2:41 60.2	7/12/2013 3:46 61.1	8/12/2013 4:51 60.2
2/12/2013 23:31 63.8	4/12/2013 0:36 62.7	5/12/2013 1:41 60.9	6/12/2013 2:46 60.0	7/12/2013 3:51 60.9	8/12/2013 4:56 60.6
2/12/2013 23:36 63.2	4/12/2013 0:41 63.1	5/12/2013 1:46 60.9	6/12/2013 2:51 60.3	7/12/2013 3:56 60.7	8/12/2013 5:01 61.0
2/12/2013 23:41 63.9	4/12/2013 0:46 62.5	5/12/2013 1:51 60.9	6/12/2013 2:56 59.7	7/12/2013 4:01 60.9	8/12/2013 5:06 60.9
2/12/2013 23:46 63.8	4/12/2013 0:51 62.2	5/12/2013 1:56 61.1	6/12/2013 3:01 60.6	7/12/2013 4:06 60.9	8/12/2013 5:11 60.2
2/12/2013 23:51 63.6 2/12/2013 23:56 64.1	4/12/2013 1:01 62.6	5/12/2013 2:06 61.3	6/12/2013 3:06 60.3 6/12/2013 3:11 59.9	7/12/2013 4:16 61.4	8/12/2013 5:16 60.9 8/12/2013 5:21 61.5
3/12/2013 0:01 63.7	4/12/2013 1:06 61.6	5/12/2013 2:11 60.2	6/12/2013 3:16 59.4	7/12/2013 4:21 61.2	8/12/2013 5:26 60.1
3/12/2013 0:06 63.3	4/12/2013 1:11 61.9	5/12/2013 2:16 60.6	6/12/2013 3:21 60.1	7/12/2013 4:26 61.0	8/12/2013 5:31 60.5
3/12/2013 0:11 63.6	4/12/2013 1:16 61.8	5/12/2013 2:21 60.5	6/12/2013 3:26 59.2	7/12/2013 4:31 60.6	8/12/2013 5:36 61.2
3/12/2013 0:16 63.1	4/12/2013 1:21 61.9	5/12/2013 2:26 59.8	6/12/2013 3:31 59.2	7/12/2013 4:36 59.9	8/12/2013 5:41 60.8
3/12/2013 0:21 63.2	4/12/2013 1:26 61.5	5/12/2013 2:31 59.6	6/12/2013 3:36 59.7	7/12/2013 4:41 61.0	8/12/2013 5:46 61.5
3/12/2013 0:26 63.2	4/12/2013 1:31 62.0	5/12/2013 2:36 59.2	6/12/2013 3:41 59.0	7/12/2013 4:46 60.4	8/12/2013 5:51 62.2
3/12/2013 0:31 62.6	4/12/2013 1:36 60.8	5/12/2013 2:41 60.0	6/12/2013 3:46 59.9	7/12/2013 4:51 60.3	8/12/2013 5:56 60.9
3/12/2013 0:36 62.9	4/12/2013 1:41 61.5	5/12/2013 2:46 60.1	6/12/2013 3:51 59.5	7/12/2013 4:56 59.9	8/12/2013 6:01 60.5
				,	

Real-time Noise Data 8/12/2013 6:06 61.1	RTN2a (Hong Kong Electric Centre 9/12/2013 23:11 64.5	<u>re)</u> 11/12/2013 0:16 63.5	12/12/2013 1:21 61.9	13/12/2013 2:26 60.5	14/12/2013 3:31 60.8
8/12/2013 6:11 61.3	9/12/2013 23:16 63.8	11/12/2013 0:21 63.8	12/12/2013 1:26 62.1	13/12/2013 2:31 61.0	14/12/2013 3:36 61.2
8/12/2013 6:16 62.1 8/12/2013 6:21 62.0	9/12/2013 23:21 64.0 9/12/2013 23:26 64.5	11/12/2013 0:26 63.1 11/12/2013 0:31 62.8	12/12/2013 1:31 61.5 12/12/2013 1:36 61.5	13/12/2013 2:36 60.1 13/12/2013 2:41 60.4	14/12/2013 3:41 60.8 14/12/2013 3:46 61.2
8/12/2013 6:26 61.9	9/12/2013 23:31 64.1	11/12/2013 0:36 62.6	12/12/2013 1:41 61.3	13/12/2013 2:46 60.4	14/12/2013 3:51 60.8
8/12/2013 6:31 61.9 8/12/2013 6:36 62.2	9/12/2013 23:36 63.3 9/12/2013 23:41 64.2	11/12/2013 0:41 62.8 11/12/2013 0:46 62.3	12/12/2013 1:46 61.7 12/12/2013 1:51 61.6	13/12/2013 2:51 60.5 13/12/2013 2:56 59.9	14/12/2013 3:56 60.5 14/12/2013 4:01 61.1
8/12/2013 6:41 62.9	9/12/2013 23:46 63.9	11/12/2013 0:51 62.5	12/12/2013 1:56 61.3	13/12/2013 3:01 60.5	14/12/2013 4:06 60.5
8/12/2013 6:46 64.1 8/12/2013 6:51 64.9	9/12/2013 23:51 63.5 9/12/2013 23:56 63.7	11/12/2013 0:56 62.8 11/12/2013 1:01 62.5	12/12/2013 2:01 61.5 12/12/2013 2:06 60.9	13/12/2013 3:06 60.3 13/12/2013 3:11 60.9	14/12/2013 4:11 60.4 14/12/2013 4:16 61.0
8/12/2013 6:56 64.9	10/12/2013 0:01 63.8	11/12/2013 1:06 62.1	12/12/2013 2:11 61.2	13/12/2013 3:16 59.3	14/12/2013 4:21 60.5
8/12/2013 23:01 64.0 8/12/2013 23:06 64.2	10/12/2013 0:06 63.3 10/12/2013 0:11 63.7	11/12/2013 1:11 61.9 11/12/2013 1:16 62.0	12/12/2013 2:16 60.3 12/12/2013 2:21 60.8	13/12/2013 3:21 61.3 13/12/2013 3:26 59.4	14/12/2013 4:26 60.6 14/12/2013 4:31 60.5
8/12/2013 23:11 64.0	10/12/2013 0:16 63.2	11/12/2013 1:21 62.2	12/12/2013 2:26 60.7	13/12/2013 3:31 60.0	14/12/2013 4:36 60.7
8/12/2013 23:16 64.6 8/12/2013 23:21 64.0	10/12/2013 0:21 63.0 10/12/2013 0:26 62.9	11/12/2013 1:26 62.2 11/12/2013 1:31 61.9	12/12/2013 2:31 60.6 12/12/2013 2:36 60.4	13/12/2013 3:36 59.4 13/12/2013 3:41 59.5	14/12/2013 4:41 59.4 14/12/2013 4:46 60.6
8/12/2013 23:26 63.9	10/12/2013 0:31 62.9	11/12/2013 1:36 61.9	12/12/2013 2:41 60.6	13/12/2013 3:46 58.9	14/12/2013 4:51 60.3
8/12/2013 23:31 64.2 8/12/2013 23:36 64.3	10/12/2013 0:36 62.4 10/12/2013 0:41 62.3	11/12/2013 1:41 60.8 11/12/2013 1:46 61.1	12/12/2013 2:46 60.0 12/12/2013 2:51 60.3	13/12/2013 3:51 60.0 13/12/2013 3:56 60.1	14/12/2013 4:56 60.6 14/12/2013 5:01 60.6
8/12/2013 23:41 63.7	10/12/2013 0:46 62.0	11/12/2013 1:51 61.1	12/12/2013 2:56 59.8	13/12/2013 4:01 59.3	14/12/2013 5:06 60.3
8/12/2013 23:46 63.4 8/12/2013 23:51 63.7	10/12/2013 0:51 62.1 10/12/2013 0:56 61.9	11/12/2013 1:56 60.6 11/12/2013 2:01 60.9	12/12/2013 3:01 60.0 12/12/2013 3:06 59.7	13/12/2013 4:06 60.0 13/12/2013 4:11 59.4	14/12/2013 5:11 60.7 14/12/2013 5:16 60.3
8/12/2013 23:56 63.8	10/12/2013 1:01 62.0	11/12/2013 2:06 60.5	12/12/2013 3:11 60.0	13/12/2013 4:16 59.3	14/12/2013 5:21 60.7
9/12/2013 0:01 63.2 9/12/2013 0:06 63.6	10/12/2013 1:06 61.8 10/12/2013 1:11 61.4	11/12/2013 2:11 59.3 11/12/2013 2:16 61.2	12/12/2013 3:16 60.1 12/12/2013 3:21 59.7	13/12/2013 4:21 59.7 13/12/2013 4:26 59.3	14/12/2013 5:26 60.6 14/12/2013 5:31 60.3
9/12/2013 0:11 64.3	10/12/2013 1:16 62.2 10/12/2013 1:21 62.6	11/12/2013 2:21 60.9	12/12/2013 3:26 59.0 12/12/2013 3:31 59.5	13/12/2013 4:31 59.4	14/12/2013 5:36 60.8
9/12/2013 0:16 63.3 9/12/2013 0:21 62.3	10/12/2013 1:21 62.6 10/12/2013 1:26 61.8	11/12/2013 2:26 60.4 11/12/2013 2:31 60.1	12/12/2013 3:31 59.5 12/12/2013 3:36 60.1	13/12/2013 4:36 59.6 13/12/2013 4:41 58.1	14/12/2013 5:41 60.9 14/12/2013 5:46 61.0
9/12/2013 0:26 62.5 9/12/2013 0:31 62.7	10/12/2013 1:31 60.9	11/12/2013 2:36 60.0 11/12/2013 2:41 60.0	12/12/2013 3:41 59.5	13/12/2013 4:46 59.2 13/12/2013 4:51 59.1	14/12/2013 5:51 60.9 14/12/2013 5:56 60.1
9/12/2013 0:36 62.7	10/12/2013 1:36 60.8 10/12/2013 1:41 61.7	11/12/2013 2:46 60.2	12/12/2013 3:46 59.5 12/12/2013 3:51 58.9	13/12/2013 4:56 59.5	14/12/2013 5:30 60:1
9/12/2013 0:41 62.3 9/12/2013 0:46 61.9	10/12/2013 1:46 60.4 10/12/2013 1:51 61.2	11/12/2013 2:51 60.1 11/12/2013 2:56 59.6	12/12/2013 3:56 59.6 12/12/2013 4:01 58.4	13/12/2013 5:01 59.4 13/12/2013 5:06 59.6	14/12/2013 6:06 61.7 14/12/2013 6:11 62.2
9/12/2013 0:46 61.9 9/12/2013 0:51 61.3	10/12/2013 1:51 61:2	11/12/2013 2:30 39:0	12/12/2013 4:01 38:4	13/12/2013 5:00 59.0	14/12/2013 6:16 61.7
9/12/2013 0:56 61.6 9/12/2013 1:01 61.4	10/12/2013 2:01 60.5	11/12/2013 3:06 59.6	12/12/2013 4:11 58.5	13/12/2013 5:16 60.1	14/12/2013 6:21 62.1
9/12/2013 1:01 61.4 9/12/2013 1:06 61.2	10/12/2013 2:06 60.7 10/12/2013 2:11 60.1	11/12/2013 3:11 59.4 11/12/2013 3:16 59.4	12/12/2013 4:16 59.3 12/12/2013 4:21 59.4	13/12/2013 5:21 59.4 13/12/2013 5:26 60.2	14/12/2013 6:26 62.2 14/12/2013 6:31 62.0
9/12/2013 1:11 60.7	10/12/2013 2:16 60.2	11/12/2013 3:21 60.7	12/12/2013 4:26 59.7	13/12/2013 5:31 60.0	14/12/2013 6:36 62.6
9/12/2013 1:16 60.5 9/12/2013 1:21 60.9	10/12/2013 2:21 60.1 10/12/2013 2:26 60.0	11/12/2013 3:26 60.4 11/12/2013 3:31 58.9	12/12/2013 4:31 58.9 12/12/2013 4:36 58.9	13/12/2013 5:36 60.1 13/12/2013 5:41 59.9	14/12/2013 6:41 63.3 14/12/2013 6:46 62.6
9/12/2013 1:26 60.9 9/12/2013 1:31 60.3	10/12/2013 2:31 59.5 10/12/2013 2:36 59.2	11/12/2013 3:36 60.2 11/12/2013 3:41 59.3	12/12/2013 4:41 59.6 12/12/2013 4:46 59.2	13/12/2013 5:46 60.7 13/12/2013 5:51 60.8	14/12/2013 6:51 62.8 14/12/2013 6:56 63.0
9/12/2013 1:36 60.5	10/12/2013 2:41 59.6	11/12/2013 3:46 58.9	12/12/2013 4:51 58.5	13/12/2013 5:56 60.6	14/12/2013 0:30 03:0
9/12/2013 1:41 59.7 9/12/2013 1:46 59.8	10/12/2013 2:46 59.4 10/12/2013 2:51 60.1	11/12/2013 3:51 60.4 11/12/2013 3:56 60.1	12/12/2013 4:56 58.9 12/12/2013 5:01 61.8	13/12/2013 6:01 61.6 13/12/2013 6:06 61.1	14/12/2013 23:06 66.8 14/12/2013 23:11 66.4
9/12/2013 1:51 60.0	10/12/2013 2:56 59.4	11/12/2013 4:01 58.7	12/12/2013 5:06 59.8	13/12/2013 6:11 61.9	14/12/2013 23:16 66.7
9/12/2013 1:56 60.0 9/12/2013 2:01 59.8	10/12/2013 3:01 59.0 10/12/2013 3:06 59.1	11/12/2013 4:06 59.9 11/12/2013 4:11 58.3	12/12/2013 5:11 59.4 12/12/2013 5:16 59.6	13/12/2013 6:16 62.4 13/12/2013 6:21 62.4	14/12/2013 23:21 66.6 14/12/2013 23:26 66.4
9/12/2013 2:06 59.9	10/12/2013 3:11 60.0	11/12/2013 4:16 59.6	12/12/2013 5:21 60.2	13/12/2013 6:26 62.6	14/12/2013 23:31 66.2
9/12/2013 2:11 59.0 9/12/2013 2:16 58.9	10/12/2013 3:16 59.3 10/12/2013 3:21 59.0	11/12/2013 4:21 58.5 11/12/2013 4:26 59.3	12/12/2013 5:26 60.6 12/12/2013 5:31 59.3	13/12/2013 6:31 62.4 13/12/2013 6:36 63.3	14/12/2013 23:36 66.2 14/12/2013 23:41 66.6
9/12/2013 2:21 59.7	10/12/2013 3:26 60.3	11/12/2013 4:31 59.3	12/12/2013 5:36 60.4	13/12/2013 6:41 63.4	14/12/2013 23:46 66.3
9/12/2013 2:26 59.1 9/12/2013 2:31 59.5	10/12/2013 3:31 58.5 10/12/2013 3:36 59.8	11/12/2013 4:36 58.6 11/12/2013 4:41 59.0	12/12/2013 5:41 60.3 12/12/2013 5:46 60.5	13/12/2013 6:46 64.0 13/12/2013 6:51 64.1	14/12/2013 23:51 66.2 14/12/2013 23:56 66.0
9/12/2013 2:36 58.7	10/12/2013 3:41 59.0	11/12/2013 4:46 59.8	12/12/2013 5:51 60.9	13/12/2013 6:56 64.4	15/12/2013 0:01 66.2
9/12/2013 2:41 59.5 9/12/2013 2:46 59.7	10/12/2013 3:46 58.6 10/12/2013 3:51 58.6	11/12/2013 4:51 58.7 11/12/2013 4:56 59.2	12/12/2013 5:56 61.5 12/12/2013 6:01 60.9	13/12/2013 23:01 64.8 13/12/2013 23:06 65.0	15/12/2013 0:06 65.9 15/12/2013 0:11 65.9
9/12/2013 2:51 58.3	10/12/2013 3:56 59.0	11/12/2013 5:01 59.5	12/12/2013 6:06 61.2	13/12/2013 23:11 64.8	15/12/2013 0:16 65.4
9/12/2013 2:56 58.9 9/12/2013 3:01 59.0	10/12/2013 4:01 57.8 10/12/2013 4:06 58.4	11/12/2013 5:06 60.3 11/12/2013 5:11 60.1	12/12/2013 6:11 62.0 12/12/2013 6:16 61.9	13/12/2013 23:16 64.6 13/12/2013 23:21 64.7	15/12/2013 0:21 65.8 15/12/2013 0:26 65.8
9/12/2013 3:06 58.6	10/12/2013 4:11 58.6	11/12/2013 5:16 59.3	12/12/2013 6:21 62.2	13/12/2013 23:26 65.0	15/12/2013 0:31 65.6
9/12/2013 3:11 58.1 9/12/2013 3:16 57.9	10/12/2013 4:16 58.3 10/12/2013 4:21 58.7	11/12/2013 5:21 59.8 11/12/2013 5:26 59.7	12/12/2013 6:26 62.3 12/12/2013 6:31 62.6	13/12/2013 23:31 64.9 13/12/2013 23:36 64.4	15/12/2013 0:36 65.5 15/12/2013 0:41 65.3
9/12/2013 3:21 58.4 9/12/2013 3:26 58.0	10/12/2013 4:26 57.5 10/12/2013 4:31 58.3	11/12/2013 5:31 60.2 11/12/2013 5:36 60.3	12/12/2013 6:36 63.3 12/12/2013 6:41 63.7	13/12/2013 23:41 64.7 13/12/2013 23:46 64.4	15/12/2013 0:46 65.0 15/12/2013 0:51 65.1
9/12/2013 3:31 58.4	10/12/2013 4:36 58.3	11/12/2013 5:30 60.3	12/12/2013 6:46 64.3	13/12/2013 23:51 64.4	15/12/2013 0:56 65.3
9/12/2013 3:36 59.1 9/12/2013 3:41 58.2	10/12/2013 4:41 58.4 10/12/2013 4:46 57.9	11/12/2013 5:46 60.3 11/12/2013 5:51 61.6	12/12/2013 6:51 64.2 12/12/2013 6:56 64.4	13/12/2013 23:56 64.3 14/12/2013 0:01 65.2	15/12/2013 1:01 65.1 15/12/2013 1:06 64.8
9/12/2013 3:46 58.6	10/12/2013 4:51 58.8	11/12/2013 5:56 61.1	12/12/2013 23:01 64.8	14/12/2013 0:06 65.0	15/12/2013 1:11 65.4
9/12/2013 3:51 58.6 9/12/2013 3:56 57.1	10/12/2013 4:56 58.9 10/12/2013 5:01 59.0	11/12/2013 6:01 61.2 11/12/2013 6:06 61.0	12/12/2013 23:06 64.6 12/12/2013 23:11 64.9	14/12/2013 0:11 63.9 14/12/2013 0:16 64.6	15/12/2013 1:16 65.1 15/12/2013 1:21 64.6
9/12/2013 4:01 57.2	10/12/2013 5:06 59.8	11/12/2013 6:11 62.0	12/12/2013 23:16 64.8	14/12/2013 0:21 64.1	15/12/2013 1:26 64.6
9/12/2013 4:06 57.3 9/12/2013 4:11 57.2	10/12/2013 5:11 61.0 10/12/2013 5:16 60.6	11/12/2013 6:16 61.2 11/12/2013 6:21 62.1	12/12/2013 23:21 64.9 12/12/2013 23:26 64.4	14/12/2013 0:26 64.5 14/12/2013 0:31 64.4	15/12/2013 1:31 64.5 15/12/2013 1:36 64.3
9/12/2013 4:16 57.6	10/12/2013 5:21 58.9	11/12/2013 6:26 62.6	12/12/2013 23:31 64.6	14/12/2013 0:36 63.5	15/12/2013 1:41 64.2
9/12/2013 4:21 58.7 9/12/2013 4:26 56.9	10/12/2013 5:26 60.0 10/12/2013 5:31 59.9	11/12/2013 6:31 63.1 11/12/2013 6:36 62.7	12/12/2013 23:36 64.8 12/12/2013 23:41 64.1	14/12/2013 0:41 64.4 14/12/2013 0:46 63.6	15/12/2013 1:46 63.6 15/12/2013 1:51 64.0
9/12/2013 4:31 58.3	10/12/2013 5:36 60.5	11/12/2013 6:41 63.5	12/12/2013 23:46 64.9	14/12/2013 0:51 63.5	15/12/2013 1:56 63.9
9/12/2013 4:36 58.3 9/12/2013 4:41 57.8	10/12/2013 5:41 60.3 10/12/2013 5:46 61.0	11/12/2013 6:46 63.8 11/12/2013 6:51 64.3	12/12/2013 23:51 65.1 12/12/2013 23:56 64.3	14/12/2013 0:56 63.3 14/12/2013 1:01 63.6	15/12/2013 2:01 64.3 15/12/2013 2:06 63.4
9/12/2013 4:46 58.7 9/12/2013 4:51 58.2	10/12/2013 5:51 60.7 10/12/2013 5:56 61.3	11/12/2013 6:56 63.9 11/12/2013 23:01 64.8	13/12/2013 0:01 64.1 13/12/2013 0:06 64.0	14/12/2013 1:06 62.9 14/12/2013 1:11 63.4	15/12/2013 2:11 63.5 15/12/2013 2:16 63.2
9/12/2013 4:56 57.8	10/12/2013 6:01 60.6	11/12/2013 23:06 64.8	13/12/2013 0:11 64.3	14/12/2013 1:16 63.4	15/12/2013 2:21 63.6
9/12/2013 5:01 58.3 9/12/2013 5:06 58.8	10/12/2013 6:06 61.0 10/12/2013 6:11 61.0	11/12/2013 23:11 64.7 11/12/2013 23:16 64.8	13/12/2013 0:16 63.8 13/12/2013 0:21 64.2	14/12/2013 1:21 63.7 14/12/2013 1:26 63.1	15/12/2013 2:26 63.7 15/12/2013 2:31 63.0
9/12/2013 5:11 58.2	10/12/2013 6:16 61.5	11/12/2013 23:21 64.7	13/12/2013 0:26 64.8	14/12/2013 1:31 62.7	15/12/2013 2:36 63.4
9/12/2013 5:16 57.8 9/12/2013 5:21 59.6	10/12/2013 6:21 62.0 10/12/2013 6:26 62.5	11/12/2013 23:26 64.7 11/12/2013 23:31 66.6	13/12/2013 0:31 63.5 13/12/2013 0:36 63.4	14/12/2013 1:36 63.1 14/12/2013 1:41 63.1	15/12/2013 2:41 63.0 15/12/2013 2:46 62.8
9/12/2013 5:26 59.6	10/12/2013 6:31 62.9	11/12/2013 23:36 64.9	13/12/2013 0:41 63.2	14/12/2013 1:46 62.9	15/12/2013 2:51 63.1
9/12/2013 5:31 59.2 9/12/2013 5:36 59.1	10/12/2013 6:36 62.7 10/12/2013 6:41 63.9	11/12/2013 23:41 65.8 11/12/2013 23:46 64.4	13/12/2013 0:46 62.7 13/12/2013 0:51 63.0	14/12/2013 1:51 63.0 14/12/2013 1:56 62.7	15/12/2013 2:56 63.2 15/12/2013 3:01 62.5
9/12/2013 5:41 60.0	10/12/2013 6:46 64.0	11/12/2013 23:51 63.8	13/12/2013 0:56 63.2	14/12/2013 2:01 62.3	15/12/2013 3:06 62.6
9/12/2013 5:46 60.2 9/12/2013 5:51 60.6	10/12/2013 6:51 64.4 10/12/2013 6:56 64.2	11/12/2013 23:56 64.2 12/12/2013 0:01 64.2	13/12/2013 1:01 62.7 13/12/2013 1:06 63.0	14/12/2013 2:06 62.6 14/12/2013 2:11 62.6	15/12/2013 3:11 62.3 15/12/2013 3:16 62.3
9/12/2013 5:56 60.1	10/12/2013 23:01 64.3	12/12/2013 0:06 64.7	13/12/2013 1:11 62.6	14/12/2013 2:16 62.3	15/12/2013 3:21 62.7
9/12/2013 6:01 60.7 9/12/2013 6:06 61.5	10/12/2013 23:06 64.6 10/12/2013 23:11 64.5	12/12/2013 0:11 64.0 12/12/2013 0:16 64.0	13/12/2013 1:16 62.3 13/12/2013 1:21 62.5	14/12/2013 2:21 62.1 14/12/2013 2:26 62.2	15/12/2013 3:26 62.3 15/12/2013 3:31 62.2
9/12/2013 6:11 61.4	10/12/2013 23:16 64.4	12/12/2013 0:21 63.1	13/12/2013 1:26 61.8	14/12/2013 2:31 61.7	15/12/2013 3:36 62.2
9/12/2013 6:16 61.9 9/12/2013 6:21 62.2	10/12/2013 23:21 64.5 10/12/2013 23:26 64.1	12/12/2013 0:26 63.5 12/12/2013 0:31 63.6	13/12/2013 1:31 62.2 13/12/2013 1:36 62.1	14/12/2013 2:36 62.5 14/12/2013 2:41 61.8	15/12/2013 3:41 62.0 15/12/2013 3:46 62.6
9/12/2013 6:26 63.1	10/12/2013 23:31 63.9	12/12/2013 0:36 62.8	13/12/2013 1:41 62.6	14/12/2013 2:46 61.8	15/12/2013 3:51 62.6
9/12/2013 6:31 63.7 9/12/2013 6:36 62.8	10/12/2013 23:36 64.2 10/12/2013 23:41 63.6	12/12/2013 0:41 63.5 12/12/2013 0:46 62.9	13/12/2013 1:46 62.0 13/12/2013 1:51 61.6	14/12/2013 2:51 61.1 14/12/2013 2:56 61.2	15/12/2013 3:56 62.1 15/12/2013 4:01 62.2
9/12/2013 6:41 63.6 9/12/2013 6:46 64.0	10/12/2013 23:46 63.8 10/12/2013 23:51 64.1	12/12/2013 0:51 62.3 12/12/2013 0:56 62.9	13/12/2013 1:56 62.0 13/12/2013 2:01 60.9	14/12/2013 3:01 61.3 14/12/2013 3:06 61.0	15/12/2013 4:06 61.8 15/12/2013 4:11 62.6
9/12/2013 6:51 63.9	10/12/2013 23:56 63.8	12/12/2013 1:01 62.4	13/12/2013 2:06 61.3	14/12/2013 3:11 61.8	15/12/2013 4:16 62.2
9/12/2013 6:56 64.3 9/12/2013 23:01 64.0	11/12/2013 0:01 64.1 11/12/2013 0:06 64.0	12/12/2013 1:06 62.3 12/12/2013 1:11 62.9	13/12/2013 2:11 60.9 13/12/2013 2:16 60.8	14/12/2013 3:16 61.1 14/12/2013 3:21 61.8	15/12/2013 4:21 61.8 15/12/2013 4:26 62.2
9/12/2013 23:06 63.7	11/12/2013 0:00 04:0	12/12/2013 1:16 62.2	13/12/2013 2:21 60.5	14/12/2013 3:26 61.1	15/12/2013 4:31 62.2

Real-time Noise Data	RTN2a (Hong Kong Electric Centr	re)			
15/12/2013 4:36 62.3	16/12/2013 5:41 60.0	17/12/2013 6:46 64.7	18/12/2013 23:51 64.5	20/12/2013 0:56 61.2	21/12/2013 2:01 60.6
15/12/2013 4:41 61.1 15/12/2013 4:46 61.7	16/12/2013 5:46 59.9 16/12/2013 5:51 61.1	17/12/2013 6:51 66.0 17/12/2013 6:56 65.9	18/12/2013 23:56 64.5 19/12/2013 0:01 64.0	20/12/2013 1:01 60.5 20/12/2013 1:06 60.8	21/12/2013 2:06 61.5 21/12/2013 2:11 60.0
15/12/2013 4:51 62.5	16/12/2013 5:56 61.3	17/12/2013 0:30 03:9	19/12/2013 0:01 64.0	20/12/2013 1:00 60.8	21/12/2013 2:16 60.3
15/12/2013 4:56 62.0	16/12/2013 6:01 61.4	17/12/2013 23:06 64.9	19/12/2013 0:11 63.1	20/12/2013 1:16 61.9	21/12/2013 2:21 60.7
15/12/2013 5:01 62.0	16/12/2013 6:06 61.0	17/12/2013 23:11 65.4	19/12/2013 0:16 63.7	20/12/2013 1:21 59.2	21/12/2013 2:26 60.3
15/12/2013 5:06 62.3 15/12/2013 5:11 61.5	16/12/2013 6:11 62.6 16/12/2013 6:16 61.9	17/12/2013 23:16 64.7	19/12/2013 0:21 63.6 19/12/2013 0:26 63.1	20/12/2013 1:26 60.7 20/12/2013 1:31 58.5	21/12/2013 2:31 59.8 21/12/2013 2:36 59.4
15/12/2013 5:16 63.3	16/12/2013 6:10 61.9	17/12/2013 23:21 65.0 17/12/2013 23:26 64.8	19/12/2013 0:26 63:1	20/12/2013 1:31 38:3	21/12/2013 2:41 59.7
15/12/2013 5:21 61.2	16/12/2013 6:26 63.5	17/12/2013 23:31 64.2	19/12/2013 0:36 62.3	20/12/2013 1:41 58.7	21/12/2013 2:46 59.9
15/12/2013 5:26 61.9	16/12/2013 6:31 63.2	17/12/2013 23:36 64.6	19/12/2013 0:41 62.7	20/12/2013 1:46 59.7	21/12/2013 2:51 60.0
15/12/2013 5:31 62.3	16/12/2013 6:36 63.9 16/12/2013 6:41 64.1	17/12/2013 23:41 64.5	19/12/2013 0:46 62.6	20/12/2013 1:51 59.7 20/12/2013 1:56 59.2	21/12/2013 2:56 60.3 21/12/2013 3:01 59.6
15/12/2013 5:36 62.1 15/12/2013 5:41 62.2	16/12/2013 6:41 64:1	17/12/2013 23:46 64.7 17/12/2013 23:51 64.5	19/12/2013 0:51 62.4 19/12/2013 0:56 62.1	20/12/2013 1:30 39.2 20/12/2013 2:01 60.3	21/12/2013 3:06 59.8
15/12/2013 5:46 62.6	16/12/2013 6:51 65.4	17/12/2013 23:56 64.5	19/12/2013 1:01 61.4	20/12/2013 2:06 60.5	21/12/2013 3:11 59.4
15/12/2013 5:51 62.3	16/12/2013 6:56 65.7	18/12/2013 0:01 64.0	19/12/2013 1:06 61.0	20/12/2013 2:11 60.1	21/12/2013 3:16 59.7
15/12/2013 5:56 62.6 15/12/2013 6:01 61.9	16/12/2013 23:01 66.1 16/12/2013 23:06 66.4	18/12/2013 0:06 63.8 18/12/2013 0:11 63.1	19/12/2013 1:11 61.6 19/12/2013 1:16 61.1	20/12/2013 2:16 59.3 20/12/2013 2:21 60.0	21/12/2013 3:21 59.6 21/12/2013 3:26 58.3
15/12/2013 6:06 62.9	16/12/2013 23:00 00:4	18/12/2013 0:11 03:1	19/12/2013 1:16 61:1	20/12/2013 2:21 60:0	21/12/2013 3:20 56.3
15/12/2013 6:11 62.9	16/12/2013 23:16 66.1	18/12/2013 0:21 63.6	19/12/2013 1:26 61.6	20/12/2013 2:31 58.6	21/12/2013 3:36 59.6
15/12/2013 6:16 62.7	16/12/2013 23:21 65.9	18/12/2013 0:26 63.1	19/12/2013 1:31 61.5	20/12/2013 2:36 58.8	21/12/2013 3:41 58.2
15/12/2013 6:21 62.5 15/12/2013 6:26 63.5	16/12/2013 23:26 65.7 16/12/2013 23:31 66.0	18/12/2013 0:31 62.3 18/12/2013 0:36 62.3	19/12/2013 1:36 60.8 19/12/2013 1:41 60.5	20/12/2013 2:41 56.5 20/12/2013 2:46 57.0	21/12/2013 3:46 57.3 21/12/2013 3:51 59.2
15/12/2013 6:31 63.2	16/12/2013 23:36 65.6	18/12/2013 0:41 62.7	19/12/2013 1:41 60:3	20/12/2013 2:51 57.6	21/12/2013 3:56 58.7
15/12/2013 6:36 63.3	16/12/2013 23:41 65.2	18/12/2013 0:46 62.6	19/12/2013 1:51 60.1	20/12/2013 2:56 57.0	21/12/2013 4:01 57.8
15/12/2013 6:41 63.6	16/12/2013 23:46 65.1	18/12/2013 0:51 62.4	19/12/2013 1:56 59.7	20/12/2013 3:01 55.6	21/12/2013 4:06 58.4
15/12/2013 6:46 63.6 15/12/2013 6:51 64.3	16/12/2013 23:51 65.4 16/12/2013 23:56 65.2	18/12/2013 0:56 62.1 18/12/2013 1:01 61.4	19/12/2013 2:01 58.7 19/12/2013 2:06 60.6	20/12/2013 3:06 56.4 20/12/2013 3:11 56.3	21/12/2013 4:11 55.5 21/12/2013 4:16 57.7
15/12/2013 6:56 63.8	17/12/2013 0:01 65.1	18/12/2013 1:06 61.0	19/12/2013 2:00 00:0	20/12/2013 3:11 30:3	21/12/2013 4:10 57:7
15/12/2013 23:01 65.6	17/12/2013 0:06 64.5	18/12/2013 1:11 61.6	19/12/2013 2:16 59.7	20/12/2013 3:21 57.2	21/12/2013 4:26 58.5
15/12/2013 23:06 65.2	17/12/2013 0:11 64.3	18/12/2013 1:16 61.1	19/12/2013 2:21 59.9	20/12/2013 3:26 57.0	21/12/2013 4:31 57.3
15/12/2013 23:11 65.4 15/12/2013 23:16 65.8	17/12/2013 0:16 64.8 17/12/2013 0:21 64.2	18/12/2013 1:21 63.2 18/12/2013 1:26 61.6	19/12/2013 2:26 59.1 19/12/2013 2:31 59.2	20/12/2013 3:31 58.0 20/12/2013 3:36 58.2	21/12/2013 4:36 57.9 21/12/2013 4:41 57.7
15/12/2013 23:10 05.6	17/12/2013 0:26 65.2	18/12/2013 1:31 61.5	19/12/2013 2:36 58.4	20/12/2013 3:41 59.4	21/12/2013 4:46 58.3
15/12/2013 23:26 65.7	17/12/2013 0:31 63.6	18/12/2013 1:36 60.8	19/12/2013 2:41 58.6	20/12/2013 3:46 56.9	21/12/2013 4:51 57.5
15/12/2013 23:31 65.5	17/12/2013 0:36 63.7	18/12/2013 1:41 60.5	19/12/2013 2:46 58.3	20/12/2013 3:51 55.6	21/12/2013 4:56 58.2
15/12/2013 23:36 65.3 15/12/2013 23:41 65.6	17/12/2013 0:41 63.8 17/12/2013 0:46 63.2	18/12/2013 1:46 60.3 18/12/2013 1:51 60.1	19/12/2013 2:51 59.0 19/12/2013 2:56 58.3	20/12/2013 3:56 55.1 20/12/2013 4:01 53.8	21/12/2013 5:01 56.9 21/12/2013 5:06 58.7
15/12/2013 23:46 65.2	17/12/2013 0:40 03.2	18/12/2013 1:56 59.7	19/12/2013 3:01 58.1	20/12/2013 4:06 57.3	21/12/2013 5:00 36.7
15/12/2013 23:51 65.0	17/12/2013 0:56 62.9	18/12/2013 2:01 58.7	19/12/2013 3:06 56.7	20/12/2013 4:11 55.2	21/12/2013 5:16 57.5
15/12/2013 23:56 65.0 16/12/2013 0:01 65.0	17/12/2013 1:01 62.8 17/12/2013 1:06 63.0	18/12/2013 2:06 60.6 18/12/2013 2:11 59.1	19/12/2013 3:11 55.3 19/12/2013 3:16 55.3	20/12/2013 4:16 55.1 20/12/2013 4:21 55.5	21/12/2013 5:21 57.8 21/12/2013 5:26 58.5
16/12/2013 0:06 64.8	17/12/2013 1:00 63:0	18/12/2013 2:11 59:1	19/12/2013 3:16 55.5	20/12/2013 4:21 55:3	21/12/2013 5:20 56.5
16/12/2013 0:11 64.6	17/12/2013 1:16 62.3	18/12/2013 2:21 59.9	19/12/2013 3:26 49.4	20/12/2013 4:31 55.9	21/12/2013 5:36 57.8
16/12/2013 0:16 64.4	17/12/2013 1:21 61.4	18/12/2013 2:26 59.1	19/12/2013 3:31 56.9	20/12/2013 4:36 56.2	21/12/2013 5:41 58.0
16/12/2013 0:21 64.0 16/12/2013 0:26 64.9	17/12/2013 1:26 61.9 17/12/2013 1:31 61.9	18/12/2013 2:31 59.2 18/12/2013 2:36 58.4	19/12/2013 3:36 57.3 19/12/2013 3:41 56.0	20/12/2013 4:41 57.1 20/12/2013 4:46 58.0	21/12/2013 5:46 58.4 21/12/2013 5:51 58.8
16/12/2013 0:20 04:9	17/12/2013 1:31 01:3	18/12/2013 2:41 58.6	19/12/2013 3:41 50:0	20/12/2013 4:40 38:0	21/12/2013 5:56 58.9
16/12/2013 0:36 64.3	17/12/2013 1:41 62.2	18/12/2013 2:46 58.3	19/12/2013 3:51 57.3	20/12/2013 4:56 57.5	21/12/2013 6:01 58.4
16/12/2013 0:41 64.1	17/12/2013 1:46 61.1	18/12/2013 2:51 59.0	19/12/2013 3:56 55.2	20/12/2013 5:01 56.1	21/12/2013 6:06 59.3
16/12/2013 0:46 63.4 16/12/2013 0:51 63.8	17/12/2013 1:51 61.2 17/12/2013 1:56 61.9	18/12/2013 2:56 58.3 18/12/2013 3:01 58.1	19/12/2013 4:01 56.8 19/12/2013 4:06 57.5	20/12/2013 5:06 57.8 20/12/2013 5:11 56.4	21/12/2013 6:11 59.9 21/12/2013 6:16 58.5
16/12/2013 0:56 63.5	17/12/2013 2:01 59.6	18/12/2013 3:06 56.7	19/12/2013 4:11 57.4	20/12/2013 5:16 54.7	21/12/2013 6:21 59.0
16/12/2013 1:01 63.3	17/12/2013 2:06 60.9	18/12/2013 3:11 55.3	19/12/2013 4:16 54.6	20/12/2013 5:21 55.4	21/12/2013 6:26 62.6
16/12/2013 1:06 63.2 16/12/2013 1:11 62.7	17/12/2013 2:11 60.0 17/12/2013 2:16 60.0	18/12/2013 3:16 55.3	19/12/2013 4:21 57.6 19/12/2013 4:26 56.0	20/12/2013 5:26 56.2 20/12/2013 5:31 58.5	21/12/2013 6:31 59.9 21/12/2013 6:36 61.6
16/12/2013 1:16 62.8	17/12/2013 2:16 60:0	18/12/2013 3:21 55.4 18/12/2013 3:26 49.4	19/12/2013 4:26 56:0	20/12/2013 5:31 58:5	21/12/2013 6:36 61.6
16/12/2013 1:21 62.3	17/12/2013 2:26 58.4	18/12/2013 3:31 56.9	19/12/2013 4:36 56.8	20/12/2013 5:41 60.0	21/12/2013 6:46 62.2
16/12/2013 1:26 62.3	17/12/2013 2:31 59.2	18/12/2013 3:36 57.3	19/12/2013 4:41 54.9	20/12/2013 5:46 59.9	21/12/2013 6:51 62.3
16/12/2013 1:31 62.3 16/12/2013 1:36 61.6	17/12/2013 2:36 60.2 17/12/2013 2:41 59.8	18/12/2013 3:41 56.0 18/12/2013 3:46 55.9	19/12/2013 4:46 59.4 19/12/2013 4:51 56.8	20/12/2013 5:51 59.7 20/12/2013 5:56 59.6	21/12/2013 6:56 63.0 21/12/2013 23:01 64.6
16/12/2013 1:30 01:0	17/12/2013 2:41 39.6	18/12/2013 3:51 57.3	19/12/2013 4:51 56:6	20/12/2013 3:30 39:0	21/12/2013 23:06 64.2
16/12/2013 1:46 61.7	17/12/2013 2:51 60.9	18/12/2013 3:56 55.2	19/12/2013 5:01 56.4	20/12/2013 6:06 58.4	21/12/2013 23:11 63.9
16/12/2013 1:51 61.4	17/12/2013 2:56 60.8	18/12/2013 4:01 56.8	19/12/2013 5:06 56.8	20/12/2013 6:11 59.6	21/12/2013 23:16 64.1
16/12/2013 1:56 61.6 16/12/2013 2:01 60.6	17/12/2013 3:01 60.4 17/12/2013 3:06 58.1	18/12/2013 4:06 57.5 18/12/2013 4:11 57.4	19/12/2013 5:11 57.7 19/12/2013 5:16 57.3	20/12/2013 6:16 60.7 20/12/2013 6:21 60.0	21/12/2013 23:21 64.5 21/12/2013 23:26 64.0
16/12/2013 2:06 61.5	17/12/2013 3:11 58.3	18/12/2013 4:16 54.6	19/12/2013 5:21 56.2	20/12/2013 6:26 60.9	21/12/2013 23:31 63.3
16/12/2013 2:11 61.2	17/12/2013 3:16 57.5	18/12/2013 4:21 57.6	19/12/2013 5:26 57.9	20/12/2013 6:31 61.2	21/12/2013 23:36 63.8
16/12/2013 2:16 61.1 16/12/2013 2:21 61.0	17/12/2013 3:21 58.7 17/12/2013 3:26 56.8	18/12/2013 4:26 56.0 18/12/2013 4:31 58.4	19/12/2013 5:31 59.4 19/12/2013 5:36 58.7	20/12/2013 6:36 61.8 20/12/2013 6:41 62.3	21/12/2013 23:41 63.6 21/12/2013 23:46 63.1
16/12/2013 2:26 60.8	17/12/2013 3:20 30:3	18/12/2013 4:31 36:4	19/12/2013 5:30 56:7	20/12/2013 6:46 63.1	21/12/2013 23:51 63.4
16/12/2013 2:31 60.7	17/12/2013 3:36 58.1	18/12/2013 4:41 54.9	19/12/2013 5:46 58.7	20/12/2013 6:51 63.2	21/12/2013 23:56 63.6
16/12/2013 2:36 60.2	17/12/2013 3:41 57.4	18/12/2013 4:46 59.4	19/12/2013 5:51 58.3	20/12/2013 6:56 64.2	22/12/2013 0:01 63.0
16/12/2013 2:41 60.7 16/12/2013 2:46 60.4	17/12/2013 3:46 57.2 17/12/2013 3:51 58.9	18/12/2013 4:51 56.8 18/12/2013 4:56 56.6	19/12/2013 5:56 59.1 19/12/2013 6:01 58.7	20/12/2013 23:01 64.6 20/12/2013 23:06 64.7	22/12/2013 0:06 62.6 22/12/2013 0:11 62.2
16/12/2013 2:51 60.7	17/12/2013 3:56 55.8	18/12/2013 5:01 56.4	19/12/2013 6:06 60.2	20/12/2013 23:11 64.7	22/12/2013 0:16 62.5
16/12/2013 2:56 61.1	17/12/2013 4:01 56.5	18/12/2013 5:06 56.8	19/12/2013 6:11 60.9	20/12/2013 23:16 64.1	22/12/2013 0:21 62.6
16/12/2013 3:01 59.0 16/12/2013 3:06 56.6	17/12/2013 4:06 58.0 17/12/2013 4:11 56.9	18/12/2013 5:11 57.7 18/12/2013 5:16 57.3	19/12/2013 6:16 60.8 19/12/2013 6:21 60.6	20/12/2013 23:21 64.0 20/12/2013 23:26 64.1	22/12/2013 0:26 62.2 22/12/2013 0:31 63.1
16/12/2013 3:11 59.3	17/12/2013 4:16 55.4	18/12/2013 5:21 56.2	19/12/2013 6:26 61.8	20/12/2013 23:20 04:1	22/12/2013 0:36 62.6
16/12/2013 3:16 56.3	17/12/2013 4:21 58.0	18/12/2013 5:26 57.9	19/12/2013 6:31 62.3	20/12/2013 23:36 64.2	22/12/2013 0:41 62.3
16/12/2013 3:21 55.9 16/12/2013 3:26 58.4	17/12/2013 4:26 57.4 17/12/2013 4:31 58.7	18/12/2013 5:31 59.4 18/12/2013 5:36 58.7	19/12/2013 6:36 62.7 19/12/2013 6:41 63.0	20/12/2013 23:41 63.7 20/12/2013 23:46 63.5	22/12/2013 0:46 61.3 22/12/2013 0:51 61.9
16/12/2013 3:31 58.8	17/12/2013 4:31 38.7	18/12/2013 5:36 56.7	19/12/2013 6:41 63:0	20/12/2013 23:40 03:3	22/12/2013 0:56 62.5
16/12/2013 3:36 56.2	17/12/2013 4:41 58.0	18/12/2013 5:46 58.7	19/12/2013 6:51 64.0	20/12/2013 23:56 63.6	22/12/2013 1:01 61.7
16/12/2013 3:41 55.8	17/12/2013 4:46 55.8	18/12/2013 5:51 58.3	19/12/2013 6:56 64.5	21/12/2013 0:01 63.4	22/12/2013 1:06 61.8
16/12/2013 3:46 55.8 16/12/2013 3:51 56.4	17/12/2013 4:51 57.2 17/12/2013 4:56 58.1	18/12/2013 5:56 59.1 18/12/2013 6:01 58.7	19/12/2013 23:01 64.4 19/12/2013 23:06 65.0	21/12/2013 0:06 64.1 21/12/2013 0:11 63.4	22/12/2013 1:11 61.8 22/12/2013 1:16 62.6
16/12/2013 3:56 54.8	17/12/2013 4:30 38:1	18/12/2013 6:06 60.2	19/12/2013 23:00 03:0	21/12/2013 0:11 03:4	22/12/2013 1:10 02:0
16/12/2013 4:01 54.8	17/12/2013 5:06 60.8	18/12/2013 6:11 60.9	19/12/2013 23:16 63.5	21/12/2013 0:21 63.2	22/12/2013 1:26 61.3
16/12/2013 4:06 51.7	17/12/2013 5:11 58.7	18/12/2013 6:16 60.8	19/12/2013 23:21 63.4	21/12/2013 0:26 63.2	22/12/2013 1:31 61.1
16/12/2013 4:11 56.6 16/12/2013 4:16 55.1	17/12/2013 5:16 60.4 17/12/2013 5:21 59.2	18/12/2013 6:21 60.6 18/12/2013 6:26 61.8	19/12/2013 23:26 64.1 19/12/2013 23:31 64.2	21/12/2013 0:31 63.3 21/12/2013 0:36 63.2	22/12/2013 1:36 61.7 22/12/2013 1:41 60.2
16/12/2013 4:21 56.8	17/12/2013 5:26 60.3	18/12/2013 6:31 62.3	19/12/2013 23:36 63.2	21/12/2013 0:41 63.5	22/12/2013 1:46 60.6
16/12/2013 4:26 55.1	17/12/2013 5:31 59.5	18/12/2013 6:36 62.7	19/12/2013 23:41 63.5	21/12/2013 0:46 63.2	22/12/2013 1:51 60.0
16/12/2013 4:31 54.7 16/12/2013 4:36 54.6	17/12/2013 5:36 59.1 17/12/2013 5:41 60.8	18/12/2013 6:41 63.0 18/12/2013 6:46 63.4	19/12/2013 23:46 63.5 19/12/2013 23:51 63.2	21/12/2013 0:51 62.4 21/12/2013 0:56 62.7	22/12/2013 1:56 60.9 22/12/2013 2:01 61.1
16/12/2013 4:41 54.1	17/12/2013 5:46 61.7	18/12/2013 6:51 64.0	19/12/2013 23:56 63.7	21/12/2013 0:30 62.7	22/12/2013 2:06 60.2
16/12/2013 4:46 57.7	17/12/2013 5:51 61.7	18/12/2013 6:56 64.5	20/12/2013 0:01 64.1	21/12/2013 1:06 61.5	22/12/2013 2:11 60.0
16/12/2013 4:51 56.4	17/12/2013 5:56 61.0	18/12/2013 23:01 64.7	20/12/2013 0:06 64.1	21/12/2013 1:11 62.1	22/12/2013 2:16 59.1
16/12/2013 4:56 57.9 16/12/2013 5:01 54.9	17/12/2013 6:01 61.3 17/12/2013 6:06 60.7	18/12/2013 23:06 64.9 18/12/2013 23:11 65.4	20/12/2013 0:11 63.6 20/12/2013 0:16 63.9	21/12/2013 1:16 62.3 21/12/2013 1:21 61.8	22/12/2013 2:21 60.7 22/12/2013 2:26 59.4
16/12/2013 5:06 58.2	17/12/2013 6:11 62.6	18/12/2013 23:16 64.7	20/12/2013 0:21 62.9	21/12/2013 1:26 62.0	22/12/2013 2:31 59.2
16/12/2013 5:11 57.2	17/12/2013 6:16 62.9	18/12/2013 23:21 65.0	20/12/2013 0:26 63.1	21/12/2013 1:31 61.1	22/12/2013 2:36 59.5
16/12/2013 5:16 58.4 16/12/2013 5:21 61.5	17/12/2013 6:21 63.7 17/12/2013 6:26 64.0	18/12/2013 23:26 64.8 18/12/2013 23:31 64.2	20/12/2013 0:31 63.5 20/12/2013 0:36 63.1	21/12/2013 1:36 61.5 21/12/2013 1:41 61.0	22/12/2013 2:41 59.5 22/12/2013 2:46 58.2
16/12/2013 5:26 58.8	17/12/2013 6:31 63.4	18/12/2013 23:36 64.6	20/12/2013 0:30 63.1	21/12/2013 1:46 60.5	22/12/2013 2:51 58.7
16/12/2013 5:31 57.3	17/12/2013 6:36 64.8	18/12/2013 23:41 64.5	20/12/2013 0:46 62.2	21/12/2013 1:51 60.8	22/12/2013 2:56 59.0
16/12/2013 5:36 60.5	17/12/2013 6:41 64.8	18/12/2013 23:46 64.7	20/12/2013 0:51 62.2	21/12/2013 1:56 60.8	22/12/2013 3:01 59.3

Real-time Noise Data	RTN2a (Hong Kong Electric Cer	ntre)		
22/12/2013 3:06 58.7	23/12/2013 4:11 58.0	24/12/2013 5:16 57.3	25/12/2013 6:21 59.3	26/12/2013 23:26 62.8
22/12/2013 3:11 58.5	23/12/2013 4:16 56.8	24/12/2013 5:21 52.7	25/12/2013 6:26 58.9	26/12/2013 23:31 62.7
22/12/2013 3:16 58.7	23/12/2013 4:21 58.3	24/12/2013 5:26 56.6	25/12/2013 6:31 58.8	26/12/2013 23:36 62.6
22/12/2013 3:21 57.7	23/12/2013 4:26 49.8	24/12/2013 5:31 55.2	25/12/2013 6:36 60.1	26/12/2013 23:41 62.8
22/12/2013 3:26 58.8	23/12/2013 4:31 57.0	24/12/2013 5:36 54.6	25/12/2013 6:41 60.1	26/12/2013 23:46 62.4
22/12/2013 3:31 58.3	23/12/2013 4:31 57:0	24/12/2013 5:41 56.8	25/12/2013 6:46 59.9	26/12/2013 23:51 62.8
22/12/2013 3:36 58.7	23/12/2013 4:41 57.7	24/12/2013 5:46 58.5	25/12/2013 6:51 60.8	26/12/2013 23:56 63.4
22/12/2013 3:41 58.4	23/12/2013 4:46 58.0	24/12/2013 5:51 58.6	25/12/2013 6:56 60.8	27/12/2013 0:01 62.3
22/12/2013 3:46 59.1	23/12/2013 4:51 58.2	24/12/2013 5:56 56.8	25/12/2013 0.50 00.8	27/12/2013 0:06 62.0
22/12/2013 3:51 58.7	23/12/2013 4:56 58.1	24/12/2013 6:01 55.8	25/12/2013 23:06 63.7	27/12/2013 0:11 61.9
	23/12/2013 5:01 51.5	24/12/2013 6:06 57.7	25/12/2013 23:11 63.4	27/12/2013 0:16 62.7
22/12/2013 3:56 58.0 22/12/2013 4:01 57.4	23/12/2013 5:06 54.1	24/12/2013 6:00 57.7	25/12/2013 23:16 63.2	27/12/2013 0:10 62.7
22/12/2013 4:06 58.4	23/12/2013 5:11 58.3	24/12/2013 6:16 59.9	25/12/2013 23:21 63.1	27/12/2013 0:26 61.0
22/12/2013 4:11 57.4	23/12/2013 5:16 54.1	24/12/2013 6:21 59.7	25/12/2013 23:26 63.0	27/12/2013 0:31 60.7
22/12/2013 4:11 57.4 22/12/2013 4:16 55.6	23/12/2013 5:10 54.1	24/12/2013 6:26 59.3	25/12/2013 23:31 63.2	27/12/2013 0:36 60.4
22/12/2013 4:21 57.5	23/12/2013 5:26 54.2	24/12/2013 6:31 59.8	25/12/2013 23:36 62.7	27/12/2013 0:41 60.7
22/12/2013 4:26 56.9	23/12/2013 5:31 50.5	24/12/2013 6:36 59.9	25/12/2013 23:41 63.5	27/12/2013 0:46 60.2
22/12/2013 4:31 58.2	23/12/2013 5:36 50.7	24/12/2013 6:41 61.1	25/12/2013 23:46 62.7	27/12/2013 0:51 59.9
22/12/2013 4:36 56.7	23/12/2013 5:41 56.1	24/12/2013 6:46 61.1	25/12/2013 23:51 63.9	27/12/2013 0:56 62.0
22/12/2013 4:41 56.0	23/12/2013 5:46 55.5	24/12/2013 6:51 62.4	25/12/2013 23:56 62.6	27/12/2013 1:01 60.2
22/12/2013 4:46 55.9	23/12/2013 5:51 57.0	24/12/2013 6:56 61.7	26/12/2013 0:01 63.0	27/12/2013 1:06 59.9
22/12/2013 4:51 57.6	23/12/2013 5:56 57.3	24/12/2013 23:01 64.3	26/12/2013 0:06 62.9	27/12/2013 1:11 59.4
22/12/2013 4:56 54.0	23/12/2013 6:01 57.1	24/12/2013 23:06 63.3	26/12/2013 0:11 62.6	27/12/2013 1:16 58.6
22/12/2013 5:01 57.8	23/12/2013 6:06 56.8	24/12/2013 23:11 63.6	26/12/2013 0:16 62.6	27/12/2013 1:21 59.8
22/12/2013 5:06 58.7	23/12/2013 6:11 56.7	24/12/2013 23:16 63.5	26/12/2013 0:21 62.1	27/12/2013 1:26 58.1
22/12/2013 5:11 57.5	23/12/2013 6:16 58.2	24/12/2013 23:21 63.2	26/12/2013 0:26 62.7	27/12/2013 1:31 58.8
22/12/2013 5:16 56.3	23/12/2013 6:21 58.7	24/12/2013 23:26 63.2	26/12/2013 0:31 62.3	27/12/2013 1:36 58.2
22/12/2013 5:21 57.8	23/12/2013 6:26 59.9	24/12/2013 23:31 63.0	26/12/2013 0:36 62.0	27/12/2013 1:41 60.4
22/12/2013 5:26 56.9	23/12/2013 6:31 59.9	24/12/2013 23:36 62.5	26/12/2013 0:41 62.4	27/12/2013 1:46 56.5
22/12/2013 5:31 58.7	23/12/2013 6:36 59.9	24/12/2013 23:41 63.3	26/12/2013 0:46 61.9	27/12/2013 1:51 56.5
22/12/2013 5:36 57.8	23/12/2013 6:41 61.7	24/12/2013 23:46 62.7	26/12/2013 0:51 61.0	27/12/2013 1:56 56.4
22/12/2013 5:41 57.7	23/12/2013 6:46 61.5	24/12/2013 23:51 63.1	26/12/2013 0:56 61.2	27/12/2013 2:01 56.3
22/12/2013 5:46 58.4	23/12/2013 6:51 62.8	24/12/2013 23:56 63.2	26/12/2013 1:01 61.5	27/12/2013 2:06 53.9
22/12/2013 5:51 58.2	23/12/2013 6:56 63.5	25/12/2013 0:01 62.0	26/12/2013 1:06 60.5	27/12/2013 2:11 57.7
22/12/2013 5:56 57.7	23/12/2013 23:01 63.1	25/12/2013 0:06 62.9	26/12/2013 1:11 59.9	27/12/2013 2:16 57.0
22/12/2013 6:01 57.6	23/12/2013 23:06 63.9	25/12/2013 0:11 62.6	26/12/2013 1:16 61.1	27/12/2013 2:21 55.1
22/12/2013 6:06 58.0	23/12/2013 23:11 63.5	25/12/2013 0:16 62.8	26/12/2013 1:21 60.5	27/12/2013 2:26 54.7
22/12/2013 6:11 57.9	23/12/2013 23:16 63.5	25/12/2013 0:21 61.7	26/12/2013 1:26 60.2	27/12/2013 2:31 53.2
22/12/2013 6:16 58.5	23/12/2013 23:21 63.8	25/12/2013 0:26 63.3	26/12/2013 1:31 60.7	27/12/2013 2:36 52.8
22/12/2013 6:21 60.1	23/12/2013 23:26 63.0	25/12/2013 0:31 62.3	26/12/2013 1:36 60.1	27/12/2013 2:41 52.3
22/12/2013 6:26 60.2	23/12/2013 23:31 63.3	25/12/2013 0:36 63.1	26/12/2013 1:41 59.8	27/12/2013 2:46 54.9
22/12/2013 6:31 59.2	23/12/2013 23:36 64.4	25/12/2013 0:41 62.8	26/12/2013 1:46 59.4	27/12/2013 2:51 54.7
22/12/2013 6:36 59.7	23/12/2013 23:41 62.5	25/12/2013 0:46 61.5	26/12/2013 1:51 59.0	27/12/2013 2:56 52.5
22/12/2013 6:41 61.1	23/12/2013 23:46 63.1	25/12/2013 0:51 61.9	26/12/2013 1:56 60.0	27/12/2013 3:01 53.4
22/12/2013 6:46 60.6	23/12/2013 23:51 62.8	25/12/2013 0:56 61.7	26/12/2013 2:01 59.2	27/12/2013 3:06 51.2
22/12/2013 6:51 61.4	23/12/2013 23:56 62.8	25/12/2013 1:01 61.4	26/12/2013 2:06 60.3	27/12/2013 3:11 47.7
22/12/2013 6:56 64.4	24/12/2013 0:01 62.7	25/12/2013 1:06 62.9	26/12/2013 2:11 59.4	27/12/2013 3:16 51.9
22/12/2013 23:01 63.9	24/12/2013 0:06 63.3	25/12/2013 1:11 62.4	26/12/2013 2:16 59.2	27/12/2013 3:21 52.7
22/12/2013 23:06 63.2	24/12/2013 0:11 63.1	25/12/2013 1:16 61.4	26/12/2013 2:21 60.2	27/12/2013 3:26 58.3
22/12/2013 23:11 63.8	24/12/2013 0:16 62.7	25/12/2013 1:21 61.1	26/12/2013 2:26 59.0	27/12/2013 3:31 53.8
22/12/2013 23:16 63.5	24/12/2013 0:21 62.6	25/12/2013 1:26 61.9	26/12/2013 2:31 59.2	27/12/2013 3:36 49.2
22/12/2013 23:21 63.0	24/12/2013 0:26 63.0	25/12/2013 1:31 61.9	26/12/2013 2:36 60.4	27/12/2013 3:41 48.6
22/12/2013 23:26 61.8	24/12/2013 0:31 61.8	25/12/2013 1:36 62.0	26/12/2013 2:41 59.3	27/12/2013 3:46 48.7
22/12/2013 23:31 62.8	24/12/2013 0:36 61.6	25/12/2013 1:41 61.4	26/12/2013 2:46 59.0	27/12/2013 3:51 52.1
22/12/2013 23:36 62.6	24/12/2013 0:41 61.6	25/12/2013 1:46 61.4	26/12/2013 2:51 57.7	27/12/2013 3:56 58.2
22/12/2013 23:41 62.4	24/12/2013 0:46 61.8	25/12/2013 1:51 61.2	26/12/2013 2:56 58.9	27/12/2013 4:01 58.1
22/12/2013 23:46 62.6	24/12/2013 0:51 61.0	25/12/2013 1:56 61.6	26/12/2013 3:01 57.9	27/12/2013 4:06 47.3
22/12/2013 23:51 61.9	24/12/2013 0:56 62.2	25/12/2013 2:01 60.6	26/12/2013 3:06 57.5	27/12/2013 4:11 58.1
22/12/2013 23:56 62.0	24/12/2013 1:01 60.9	25/12/2013 2:06 61.0	26/12/2013 3:11 57.8	27/12/2013 4:16 39.7
23/12/2013 0:01 61.8	24/12/2013 1:06 60.8	25/12/2013 2:11 60.6 25/12/2013 2:16 61.3	26/12/2013 3:16 56.7	27/12/2013 4:21 50.0
23/12/2013 0:06 61.8	24/12/2013 1:11 61.2	25/12/2013 2:21 60.3	26/12/2013 3:21 57.7	27/12/2013 4:26 51.3
23/12/2013 0:11 61.3	24/12/2013 1:16 60.6		26/12/2013 3:26 57.6	27/12/2013 4:31 56.6
23/12/2013 0:16 61.0	24/12/2013 1:21 60.9	25/12/2013 2:26 60.4	26/12/2013 3:31 57.9	27/12/2013 4:36 42.4
23/12/2013 0:21 60.8	24/12/2013 1:26 59.8	25/12/2013 2:31 60.7	26/12/2013 3:36 57.5	27/12/2013 4:41 49.0
23/12/2013 0:26 61.2	24/12/2013 1:31 60.8	25/12/2013 2:36 60.8	26/12/2013 3:41 56.2	27/12/2013 4:46 47.4
23/12/2013 0:31 60.9	24/12/2013 1:36 59.8	25/12/2013 2:41 60.6	26/12/2013 3:46 56.3	27/12/2013 4:51 58.3
23/12/2013 0:36 61.4	24/12/2013 1:41 59.9	25/12/2013 2:46 59.7	26/12/2013 3:51 58.6	27/12/2013 4:56 50.7
23/12/2013 0:41 59.4	24/12/2013 1:46 58.9	25/12/2013 2:51 59.3	26/12/2013 3:56 53.9	27/12/2013 5:01 53.0
23/12/2013 0:46 60.2	24/12/2013 1:51 58.5	25/12/2013 2:56 60.5	26/12/2013 4:01 56.8	27/12/2013 5:06 54.5
23/12/2013 0:51 60.5	24/12/2013 1:56 59.0	25/12/2013 3:01 58.8	26/12/2013 4:06 56.5	27/12/2013 5:11 55.6
23/12/2013 0:56 59.0	24/12/2013 2:01 58.3	25/12/2013 3:06 58.5	26/12/2013 4:11 53.6	27/12/2013 5:16 53.8
23/12/2013 1:01 59.3	24/12/2013 2:06 57.5	25/12/2013 3:11 59.7	26/12/2013 4:16 57.3	27/12/2013 5:21 51.5
23/12/2013 1:06 57.1	24/12/2013 2:11 57.2	25/12/2013 3:16 61.5	26/12/2013 4:21 56.1	27/12/2013 5:26 50.4
23/12/2013 1:11 57.1	24/12/2013 2:16 58.0	25/12/2013 3:21 59.7	26/12/2013 4:26 55.6	27/12/2013 5:31 52.8
23/12/2013 1:16 57.4	24/12/2013 2:21 58.2	25/12/2013 3:26 60.4	26/12/2013 4:31 56.1	27/12/2013 5:36 54.1
23/12/2013 1:21 56.7	24/12/2013 2:26 57.4	25/12/2013 3:31 59.2	26/12/2013 4:36 56.2	27/12/2013 5:41 57.3
23/12/2013 1:26 56.0	24/12/2013 2:31 57.6	25/12/2013 3:36 57.8	26/12/2013 4:41 55.2	27/12/2013 5:46 54.5
23/12/2013 1:31 55.9	24/12/2013 2:36 56.5	25/12/2013 3:41 57.7	26/12/2013 4:46 57.6	27/12/2013 5:51 54.3
23/12/2013 1:36 57.7	24/12/2013 2:41 57.2	25/12/2013 3:46 59.1	26/12/2013 4:51 57.9	27/12/2013 5:56 57.1
23/12/2013 1:41 57.2	24/12/2013 2:46 57.5	25/12/2013 3:51 57.9	26/12/2013 4:56 56.8	27/12/2013 6:01 58.1
23/12/2013 1:46 55.0	24/12/2013 2:51 58.6	25/12/2013 3:56 57.9	26/12/2013 5:01 53.8	27/12/2013 6:06 57.1
23/12/2013 1:51 55.9	24/12/2013 2:56 56.4	25/12/2013 4:01 59.3	26/12/2013 5:06 57.4	27/12/2013 6:11 56.2
23/12/2013 1:56 48.6	24/12/2013 3:01 56.2	25/12/2013 4:06 59.6	26/12/2013 5:11 58.4	27/12/2013 6:16 58.4
23/12/2013 2:01 59.6	24/12/2013 3:06 53.2	25/12/2013 4:11 58.3	26/12/2013 5:16 56.0	27/12/2013 6:21 58.7
23/12/2013 2:06 53.5	24/12/2013 3:11 55.7	25/12/2013 4:16 58.0	26/12/2013 5:21 56.7	27/12/2013 6:26 60.1
23/12/2013 2:11 52.0	24/12/2013 3:16 55.5	25/12/2013 4:21 59.8	26/12/2013 5:26 55.6	27/12/2013 6:31 58.5
23/12/2013 2:16 54.6	24/12/2013 3:21 55.8	25/12/2013 4:26 57.2	26/12/2013 5:31 55.6	27/12/2013 6:36 60.3
23/12/2013 2:21 53.5	24/12/2013 3:26 53.1	25/12/2013 4:31 57.6	26/12/2013 5:36 55.6	27/12/2013 6:41 60.9
23/12/2013 2:26 51.8	24/12/2013 3:31 54.8	25/12/2013 4:36 57.4	26/12/2013 5:41 56.8	27/12/2013 6:46 61.4
23/12/2013 2:31 45.7	24/12/2013 3:36 53.1	25/12/2013 4:41 56.9	26/12/2013 5:46 57.4	27/12/2013 6:51 61.9
23/12/2013 2:36 53.4	24/12/2013 3:41 50.9	25/12/2013 4:46 57.2	26/12/2013 5:51 57.1	27/12/2013 6:56 61.7
23/12/2013 2:41 58.2	24/12/2013 3:46 55.2	25/12/2013 4:51 56.9	26/12/2013 5:56 57.5	27/12/2013 23:01 63.1
23/12/2013 2:46 54.6	24/12/2013 3:51 53.7	25/12/2013 4:56 57.8	26/12/2013 6:01 56.9	27/12/2013 23:06 62.9
23/12/2013 2:51 50.8	24/12/2013 3:56 53.8	25/12/2013 5:01 57.3	26/12/2013 6:06 57.7	27/12/2013 23:11 63.3
23/12/2013 2:56 49.8	24/12/2013 4:01 51.9	25/12/2013 5:06 57.6	26/12/2013 6:11 57.5	27/12/2013 23:16 63.4
23/12/2013 3:01 58.3	24/12/2013 4:06 52.3	25/12/2013 5:11 58.5	26/12/2013 6:16 57.5	27/12/2013 23:21 62.8
23/12/2013 3:06 49.6	24/12/2013 4:11 52.9	25/12/2013 5:16 59.1	26/12/2013 6:21 57.4	27/12/2013 23:26 62.9
23/12/2013 3:11 42.0	24/12/2013 4:16 58.3	25/12/2013 5:21 57.5	26/12/2013 6:26 57.4	27/12/2013 23:31 62.8
23/12/2013 3:16 44.0	24/12/2013 4:21 47.9	25/12/2013 5:26 57.6	26/12/2013 6:31 59.1	27/12/2013 23:36 62.6
23/12/2013 3:21 57.7	24/12/2013 4:26 51.9	25/12/2013 5:31 58.7	26/12/2013 6:36 59.7	27/12/2013 23:41 62.6
23/12/2013 3:26 58.2	24/12/2013 4:31 54.3	25/12/2013 5:36 59.2	26/12/2013 6:41 60.1	27/12/2013 23:46 62.6
23/12/2013 3:31 49.7	24/12/2013 4:36 53.7	25/12/2013 5:41 58.9	26/12/2013 6:46 60.7	27/12/2013 23:51 62.3
23/12/2013 3:36 58.2	24/12/2013 4:41 49.7	25/12/2013 5:46 57.8	26/12/2013 6:51 61.2	27/12/2013 23:56 62.6
23/12/2013 3:41 45.2	24/12/2013 4:46 51.3	25/12/2013 5:51 59.0	26/12/2013 6:56 61.2	
23/12/2013 3:46 44.8	24/12/2013 4:51 51.2	25/12/2013 5:56 57.7	26/12/2013 23:01 63.2	
23/12/2013 3:51 58.0	24/12/2013 4:56 47.1	25/12/2013 6:01 58.3	26/12/2013 23:06 62.9	
23/12/2013 3:56 57.5	24/12/2013 5:01 55.1	25/12/2013 6:06 60.2	26/12/2013 23:11 62.7	
23/12/2013 4:01 57.9	24/12/2013 5:06 56.8	25/12/2013 6:11 60.4	26/12/2013 23:16 62.9	
23/12/2013 4:06 34.9	24/12/2013 5:11 53.1	25/12/2013 6:16 58.0	26/12/2013 23:21 62.6	

After checking with contractor HY/2009/19, no major noisy construction works were conducted at the concerned location during the recorded period and contractor mitigation measures including erection of temporary noise barrier was confirmed in place. As the exceedance is non-continuous, the exceedances were considered to be contributed by nearby IEC traffic and nearby non- CWB Projects.

Appendix 6.1

Event Action Plans

Event/Action Plan for Construction Noise

EVENT		AC	CTION	
	ET	IEC	ER	CONTRACTOR
Action Level being exceeded	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)

am	Lam Geotechnics Lin

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Limit Level being exceeded	 Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified)	of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified) 	

Event / Action Plan for Construction Air Quality

EVENT		ACTION		
CACIA1	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. (The above actions should be taken within 2 working days after the exceedance is identified)	Check monitoring data submitted by ET; Check Contractor's working method. (The above actions should be taken within 2 working days after the exceedance is identified)	Notify Contractor. (The above actions should be taken within 2 working days after the exceedance is identified)	Rectify any unacceptable practice; Amend working methods if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
2. Exceedance for two or more consecutive samples	Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
LIMIT LEVEL		I	1	I
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. (The above actions should be taken within 2 working days after the exceedance is identified)	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
Exceedance for two or more consecutive samples	Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification and Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreemitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next working day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after the exceedance is identified)

Event and Action Plan for Odour Patrol

Event		ACTION
	Person-in-charge of Odour Monitoring	Implementation Agent Identified by CEDD
Action Level		
Exceedance of Action Level	Identify source/reason of exceedance; Repeat odour patrol to confirm finding.	 Carry out investigation to identify the source/reason of exceedance; Rectify any unacceptable practice Implement more mitigation measures if necessary; Inform EPD or MD if exceedance is considered to be caused by expedient connections or floating debris.
Limit Level		
Exceedance of Limit Level	1. Identify source / reason of exceedance; 2. Repeat odour patrol to confirm findings; 3. Increase odour patrol frequency; 4. If exceedance stops, cease additional odour patrol.	 Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 2 weeks; Rectify any unacceptable practice; Formulate remedial actions; Ensure remedial actions properly implemented; If exceedance continues, consider what more/enhanced mitigation measures shall be implemented; Inform EPD or MD if exceedance is considered to be caused by expedient connections or floating debris.

Appendix 6.2

Summary for Notification of Exceedance

Ref. No.	Date	Time	Location	Construction Noise Level	Unit	Action Level	Limit Level	Follow-up action	
X_10N149	10-Dec-13	9:18	M6 - HK Baptist Church Henrietta Secondary School	73	Leq(30-min)	when one documented complaint was received.	65	Possible reason:	Traffic nearby was observed during monitoring and was considered as the major noise contribution.
								Remarks / Other Obs:	Repeat measurement to confirm result and reviewed the trend of noise measurement. Analysis of contractor's working procedure. Crosshead and Rebar fixing works for Contract HY/2009/19 were conducted during the measurement. It was observed that traffic noise was a major noise source during monitoring. It is concluded that the exceedance was not due to project but to traffic noise nearby.

Ref. No.	Date	Time	Location	Construction Noise Level	Unit	Action Level	Limit Level	Follow-up action	
X_10N150	18-Dec-13	10:40	M6 - HK Baptist Church Henrietta Secondary School	72	Leq(30-min)	when one documented complaint was received.	65	Possible reason:	Traffic nearby was observed during monitoring and was considered as the major noise contribution.
									Repeat measurement to confirm result and reviewed the trend of noise measurement. Analysis of contractor's working procedure. Rebar fixing works for Contract HY/2009/19 were conducted during the measurement. It was observed that traffic noise was a major noise source during monitoring. It is concluded that the exceedance was not due to project but to traffic noise nearby.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
X_10C602	4-Dec-13	Mid-flood	C7	DO(mg/L)	5.26	3.36	2.73	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station
				Turbidity	14.76	9.10		Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. Checking with contractor's inspection record.
				ss	23.00	15.00	22.13	Remarks / Other Obs:	Silt screen was in proper condition. Installation of rebar for EVA at Eastern Breakwater and dredging of type 2 marine sediment was conducted by contractor HY/2009/15 on that day. Mitigation measure including frame type silt curtain was confirmed in place. In view of no further exceedance was recorded in the next consecutive monitoring despite on-going marine works within same sampling date. The exceedance was considered as works-related
X_10C603	16-Dec-13	Mid-flood	C7	DO(mg/L)	4.91	3.36	2.73	Possible reason:	Underwater silt screen inspection leading to changes of water quality in the vicinity of the water quality monitoring station
				Turbidity	39.13	9.10		Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works.
				SS	62.50	15.00	22.13	Remarks / Other Obs:	Underwater silt screen inspection was observed during water quality monitoring. According to on-site observation during sampling, it was considered that the dragging action of unwinding silt curtain installed around the silt screen could have impaired the water quality and lead to the abnormal turbidity and SS level. Cotractor was advised to review the underwater silt screen inspection process as a propose to reduce the impact on water quality in the vicinity of water quality monitoring station. In view of no further exceedance was recorded in the next consecutive monitoring despite on-going marine works within same sampling date. The exceedance was considered as works-related

Ref no.	Date	Tidal	Location	Depth	Parameters (Unit)	Measured	Action L	eve Lir	nit Level	Follow-up action	
X_10D385		Mid-Ebb		Middle	DO(mg/l)	2.34		.84		Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										Remarks / Other Obs:	It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D386	2-Dec-13	Mid-Ebb	Ex-WPCWA SE	Middle	DO(mg/l)	2.31	4	.26	3.61	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										Remarks / Other Obs:	It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D387	4-Dec-13	Mid-Flood	Ex-WPCWA SW	Middle	DO(mg/l)	3.71	3	.84	3.73	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										Remarks / Other Obs:	Owning to minimal flushing combined with organic dischargeduring ebb tide. DO level was observed improved during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D388	4-Dec-13	Mid-Flood	Ex-WPCWA SE	Middle	DO(mg/l)	4.00	4	.26	3.61	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										Remarks / Other Obs:	Owning to minimal flushing combined with organic dischargeduring ebb tide. DO level was observed improved during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.

Ref no.	Date	Tidal	Location	Depth	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
X_10D389	7-Dec-13	Mid-Ebb	Ex-WPCWA SW	Middle	DO(mg/l)	3.05	3.84		Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D390	7-Dec-13	Mid-Ebb	Ex-WPCWA SE	Middle	DO(mg/l)	3.23	4.26	3.61		Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D391	9-Dec-13	Mid-Ebb	Ex-WPCWA SW	Middle	DO(mg/l)	2.07	3.84	3.73		Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D392	9-Dec-13	Mid-Ebb	Ex-WPCWA SE	Middle	DO(mg/l)	2.36	4.26	3.61		Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.

Ref no.	Date	Tidal	Location	Depth	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
X_10D393		Mid-Ebb	Ex-WPCWA SW	Middle	DO(mg/l)	2.66	3.84		Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D394	11-Dec-13	Mid-Ebb	Ex-WPCWA SE	Middle	DO(mg/l)	2.99	4.26	3.61		Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D395	13-Dec-13	Mid-Ebb	Ex-WPCWA SW	Middle	DO(mg/l)	1.10	3.84	3.73		Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D396	13-Dec-13	Mid-Ebb	Ex-WPCWA SE	Middle	DO(mg/l)	1.31	4.26	3.61		Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
										Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works.
										It was observed that natural tidal flushing was minimal during ebb tide. DO level was observed replenished during flood tide cycle. The DO level at the concerned location will be keep in view closely and additional measures should be considered when necessary. DO level was observed restored during both ebb and flood tide since 16 December 2013 In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass Sampling, Field Measurement and Testing Work (Stage 2) Summary for Notification of Exceedance

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
X_W539	30-Nov-13	Mid-Flood	WSD21	DO(mg/L)	4.37	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	5.77	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. Checking with contractor's
									inspection record.
				SS	27.50	13.00	14.43	Remarks / Other Obs:	According to contractor record, silt screen washing was conducted on that day.
									In view of no marine work was conducting duriing water quality monitoring.
X W540	30-Nov-13	Mid-Flood	WSD10	DO(mg/L)	6.62	3.66	2 20	Possible reason:	Silt screen was confirmed in order, the exceedances was considered not
^_w540	30-NOV-13	iviiu-Fi00u	**3D18	DO(mg/L)	0.02	3.00	3.20	i ossibie reason.	
				Turbidity	6.15	8.04	9 40	Action taken / to be	
					3.10	3.54	3.43	taken:	
				SS	16.50	13.00	14.43	Remarks / Other Obs:	
X_W541	30-Nov-13	Mid-Ebb	WSD21	DO(mg/L)	4.16	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water
									quality monitoring station.
				Turbidity	7.77	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. Checking with contractor's
									inspection record.
				SS	15.50	13.00	14.43	Remarks / Other Obs:	Inview of no marine work was conducting duriing water quality monitoring. Silt screen was confirmed in order, the exceedances was considered not
V 11/5 (5	1.5. 10		11100110	20(#)	0	0.55			project related.
X_W542	4-Dec-13	Mid-Ebb	WSD19	DO(mg/L)	6.20	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbiditi	40.00	0.04	0.40	Action taken / to be	
				Turbidity	18.28	8.04	9.49	taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works.
				SS	8.00	13.00	14.42	Remarks / Other Obs:	Dredging works was conducted by Contractor HK/2012/08 during monitoring.
				55	6.00	13.00	14.43	Tomarks / Other ODS.	Mitigation meaures including framed silt curtain was confirmed in place. Silt
									screen was confirmed in order, The exceedances was considered not project related.
X_W543	7-Dec-13	Mid-Flood	WSD17	DO(mg/L)	6.77	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water
									quality monitoring station.
				Turbidity	7.80	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the
				00		40.0-			exceedances. Checking with contractor's works.
				SS	14.50	13.00	14.43	Remarks / Other Obs:	In view of no marine work was conducting during water quality monitoring, the exceedances was considered not project related.
V 14/5	7 D 10	MAIN ET	MODAO	DO(2.5-	Describle and	` `
X_W544	7-Dec-13	Mid-Flood	WSD19	DO(mg/L)	6.29	3.66	3.28	Possible reason:	
				To add table			•	A street delices at the	
				Turbidity	20.87	8.04	9.49	Action taken / to be taken:	
				SS	40.55	13.00	14.40	Remarks / Other Obs:	
				33	13.50	13.00	14.43	Remarks / Other Obs:	
X_W545	7-Dec-13	Mid-Ebb	WSD21	DO(mg/L)	4.55	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water
									quality monitoring station.
				Turbidity	4.95	8.04	9.49	Action taken / to be	Immediate repeated in-situ measurements had conducted to confirm the
								taken:	exceedances. Checking with contractor's works. Checking with contractor's inspection record.
				SS	15.50	13.00	14.43	Remarks / Other Obs:	According to contractor record, silt screen washing was conducted on that
									day. Inview of no marine work was conducting duriing water quality monitoring.
									Silt screen was confirmed in order, the exceedances was considered not

am

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass Sampling, Field Measurement and Testing Work (Stage 2) Summary for Notification of Exceedance

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
X_W546	9-Dec-13	Mid-Flood		DO(mg/L)	6.22	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	8.73	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works
				ss	19.50	13.00	14.43	Remarks / Other Obs:	Dredging works was conducted by Contractor HK/2012/08 during monitoring. Mitigation meaures including framed silt curtain was confirmed in place. Silt screen was confirmed in order, The exceedances was considered not project related.
X_W547	9-Dec-13	Mid-Flood	WSD9	DO (mg/L)	6.51	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	5.04	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. The tidal was moving westward.
				Suspended Solid	20.00	13.00	14.43	Remarks / Other Obs:	No marine works was conducted on that day amd no further exceedance was recorded in the next consecutive monitoring and since WSD9 was located at the upstream of the Project, in view that the water quality at monitoring stations located nearest the marine work site were well below the Action level, the exceedances was considered not project related.
X_W548	9-Dec-13	Mid-Ebb	WSD9	DO (mg/L)	6.15	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	1.62	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. The tidal was moving westward.
				Suspended Solid	16.50	13.00	14.43	Remarks / Other Obs:	In view of no marine works was conducted on that day and the water quality at monitoring stations located nearest the marine work site were well below the Action level, the exceedances was considered not project related.
X_W549	13-Dec-13	Mid-Flood	WSD21	DO(mg/L)	5.44	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	6.28	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. Checking with contractor's inspection record.
				SS	13.50	13.00	14.43	Remarks / Other Obs:	Inspection records Inview of no marine work was conducting duriing water quality monitoring. Silt screen was confirmed in order, the exceedances was considered not project related.
X_W550	16-Dec-13	Mid-Flood	WSD19	DO(mg/L)	6.10	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	11.73	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works
				ss	8.00	13.00	14.43	Remarks / Other Obs:	Dredging works was conducted by Contractor HK/2012/08 during monitoring. Mitigation meaures including framed silt curtain was confirmed in place. The exceedances was considered not project related.
X_W551	18-Dec-13	Mid-Flood	WSD19	DO(mg/L)	6.51	3.66	3.28	Possible reason:	
				Turbidity	12.79	8.04	9.49	Action taken / to be taken:	
				SS	23.50	13.00	14.43	Remarks / Other Obs:	
X_W552	18-Dec-13	Mid-Flood	WSD21	DO(mg/L)	6.44	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	6.90	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. Checking with contractor's inspection record.
				SS	14.00	13.00	14.43	Remarks / Other Obs:	Inspection record. According to contractor record, silt screen washing was conducted on that day. Inview of no marine work was conducting duriing water quality monitoring.
									Silt screen was confirmed in order, the exceedances was considered not

am

Lam Geotechnices Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass Sampling, Field Measurement and Testing Work (Stage 2) Summary for Notification of Exceedance

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
(_W553	21-Dec-13	Mid-Flood	WSD9	DO (mg/L)	6.78	3.66	3.28	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	8.45	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. The tidal was moving westward.
				Suspended Solid	7.00	13.00	14.43	Remarks / Other Obs:	In view of no marine works was conducted on that day amd no further exceedance was recorded in the next consecutive monitoring and since WSD9 was located at the upstream of the Project, in view that the water quality at monitoring stations located nearest the marine work site were well below the Action level, the exceedances was considered not project related
(_W554	24-Dec-13	Mid-Flood	WSD21	DO(mg/L)	5.78	3.66	3.28	Possible reason:	Natural variation of changes of water quality in the vicinity of the water quality monitoring station.
				Turbidity	6.79	8.04	9.49	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. Checking with contractor's works. Checking with contractor's inspection record.
				SS	45.00	13.00	14.43	Remarks / Other Obs:	According to contractor record, silt screen was in order on that day. In view of no marine work was conducting during water quality monitoring and no further exceedance was recorded in the next consecutive monitoring the exceedances was considered not project related.

Appendix 9.1

Complaint Log

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
100321a	21/3/2010	ICC Case no. 1-224618029, Ms. Tsang	Location near Tin Hau	Complaint regarding the loud noise and dark smoke in the course of dredging works on 21 March 2010 (Sunday).	 A valid Construction Noise Permit no. GW-RS0119 was granted from EPD since 18th Feb. 2010 for dredging works which carry out at area for North I Reclamation. 	the
					 Officer from Marine Department, Police and EPD's of attended the scene for inspection and investigation. 	icer
					3) The Contractor (CHEC-CRBC JV) strictly comply al conditions in CNP and take all mitigation measure order to minimize the potential impacts to surroun sensitive receivers. A formal letter was issued ou CHEC-CRBC JV and to explain the status of the re construction activities.	s in ling by
					4) No limit level exceedance was recorded on the r measurement during day time and evening time r measurement on 23 March 2010. Additional restrict h noise monitoring at Causeway Bay Community and Garden was conducted on 5 April 2010 (Public Holio No limit level exceedance was recorded in the monitorion.)	oise ours City ay).
					 No further complaints were received from Mr. Tsang in reporting month. The complaint is considered closed. 	the
100321b	21/3/2010	Unknown	breakwater of the	A public complaint and enquiry regarding loud noises emanated from dredging activities on 21/3/2010 (Sunday) until 2220 hours and between 1920-1946 hours in the evening of 22 March	A valid Construction Noise Permit no. GW-RS0119 was granted from EPD since 18 th Feb. 2010 for dredging works at area for North Point Reclamation du general holidays including Sunday between 0700-4 hours and any day not being a general holiday between 1900-2300hours. It is complied with the condition of CN	the ring 300 een
				2010(Monday).	 Officer from Marine Department, Police and EPD's of attended the scene for inspection and investigation. 	icer
					3) No limit level exceedance was recorded on the r measurement during day time and evening time r measurement on 23 March 2010. Additional restrict h noise monitoring at Causeway Bay Community and Garden was conducted on 5 April 2010 (Public Holio No limit level exceedance was recorded in the monitorion.)	oise ours City ay).
					 No further complaints were received in the repo month. The complaint is considered closed. 	ting

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status	
100504	4/5/2010	Public complainant received by ICC (ICC case: 1-	Watson Road	Complaint on the noise nuisance due to the large scale of dredging machine (face to Island East Corridor) in particular the	,	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0119-10 for their dredging works. Contractor has implemented mitigation measures to reduce the working hour not later than 2230.	Closed	
		233384048)		hours 1900 to 0800 and request to reduce the noise level.	2)	According to RSS 's record, no more daytime and night time dredging since the departure of the split hopper barge from the workplace on 29 April 2010 at 1900 hrs to 5 May 2010.		
				3)	No further complaints were received in the reporting month. The complaint is considered closed.			
100731	31/7/2010	Mr. Lee received by ICC (CC Case:	Oil Street to Watson Road	Complaint on the noise nuisance due to the dredging works.		Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0371-10 for their dredging works.	Closed	
		1-250702681)		Three construction plants were operated concurrently.	2)	There was only 1 grab dredger operated by Contractor within NPR project site area for dredging works.		
					3)	No noise exceedance was recorded at noise monitoring station at Victoria Centre on 27 July and 3 August 2010 during daytime and evening time period.		
					4)	It is considered as invalid from the EP and CNP point of view. $ \\$		
100812	12/8/2010	12/8/2010 Mr. Wong, Harbour Heights (Management) Ltd.	Harbour Heights (Management)	Harbour Heights	Management office received their resident complained on the noise nuisance from the dredging works at the marine	ŕ	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0371-10 for their dredging works. Contractor has implemented mitigation measures to reduce the working hour not later than 2230.	Closed
				works area adjacent to the Harbour Height during the period from 0700 to 2200.		No noise exceedance was recorded at noise monitoring station at Victoria Centre on 10 and 17 August 2010 during daytime and evening time period.		
					3)	It is considered as invalid complaint. No further complaints were received in the reporting month. The complaint is considered closed.		

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
101108	8/11/2010	Mr. Nip received by ICC (CC Case)	Sai Wan Ho	Visual concern around the seaside silt screen outside the WSD freshwater intake pump at Sai Wan Ho (Monitoring station ref no WSD15)	1)	Contractor for HY/2009/11has been regular checked of condition and removal of trapped rubbish before the dismantling of the floating silt screen to be replaced by wall mount silt screen.	Closed
				Station ref flo WSD 13)	2)	Follow-up action had been immediately carried out to check and clear the floating refuse around the seaside silt screen after receipt of the complaint.	
					3)	Removal of seaside silt screen outside the WSD freshwater intake (WSD15) by contractor HY/2009/11 was checked and confirmed dated 9 November 2010. Silt screen has been deployed into the existing steel frame at WSD15 for the protection of WSD salt water intake.	
101110	10/11/2010	Mr. Wong, Harbour Heights (Management) Ltd.	Harbour Heights	Management office received their resident complained on the noise nuisance from the power mechanical equipment during the 0700 to 2200hrs	'	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0870-10 for their dredging works during evening time. Contractor has implemented mitigation measures to reduce the working hour not later than 2230.	Closed
					2)	No noise exceedance was recorded at noise monitoring station at Victoria Centre on 4 and 10 November 2010 during daytime and evening time period.	
					3)	It is considered as invalid complaint. No further complaints were received in the reporting month. The complaint is considered closed.	
101203	3/12/2010, 01:45a.m.	The resident of Block 11, City Garden by ICC referral from Marine	North Point	Bad odour was generated from the dredging plant off North Point	1)	The first investigation was carried out by Marine Department patrol in the morning on 3 Dec 2010 at around 10:00 and revealed that a few working barges were anchoring in the vicinity without carrying out dredging work.	Closed
		Department			2)	A further specific investigation inspection on contractor's backhoe barge in the vicinity of City Garden was jointly conducted with Engineer Representatives (AECOM/RSS), and ET on 8 Dec 2010 at 11:30. No bad odour was noted during the investigation.	
					3)	Routine dredging operation of the backhoe barge was performed during the jointed investigation inspection and it was revealed that no bad odour was attributed by the dredged materials inspected.	
101206	6/12/2010	Ms Lui, the resident of 27/F, Block 10, City	City Garden, North Point	Two barges were generating noise at 22:00 on 6 December 2010 in which the noise from	1)	ET confirmed the following information with resident site staff on the complaint: • It was referred to the filling operation at North Point	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
	•	Garden by ICC (ICC case: 1- 266039336)		filling operation was louder than the traffic noise & visual impact was generated due to the spotlight pointing directly to the complainant flat, suspected the filling operation was part of Wanchai Development Phase II; Complainant also raised the same complaint to District Councillor, Mr. Hui on 7 Dec 2010 regarding the night-time noise and suspected earlier start of work at 06:30. Complaint also requested for limiting the plant operating hours from 09:00-21:00.	compliant with valid CNP no. GW-RS0870-10. The noise level recorded on 6 Dec 2010 was complied with the noise criteria during restricted hour;	
110415	15/04/2011	The resident, Mr Law at Victoria Centre by ICC (ICC#1- 281451236)	North Point	A dust generation and a concern of mosquitoes breeding complaint in which suspected the filling operation was part of North Point Reclamation.	 The concerned stockpile was a working stockpile under Contract HY/209/15 and was covered at night time after work. Water spraying on the haul road and potential dust generating material at least 4 times a day was conducted by contractor that complies with the requirement. It is considered invalid but preventive actions can be taken because the stockpile is relatively large and easily visible by complainant. It was recommended that increasing the frequency of water spraying shall be conducted to all potential dust generating materials and activities. Besides, Contractor should consider to cover the idle part of the stockpile The concern of mosquitoes breeding is out the scope of EM&A, the follow-up action is not reported in this monthly EM&A report. 	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	tcome	Status
110419	19/04/2011	Victoria Centre at Victoria Centre by	North Point	The episode of night noise on 19/4/11 and 20/4/11 at 2:50 am and the noise lasted for 30 minutes per night.	1)	According to the RSS's record, there was no construction works undertaken under the EP-356/2009 during the concern time period.	Closed
		ICC (ICC# 1- 272874759)		Timilaces per riight.	2)	There was no abnormal real-time noise monitoring data recorded in RTN1 - FEHD Hong Kong Transport Section Whitefield Depot which is next to the Victoria Centre.	
					3)	It is considered as invalid complaint under this Project.	
110617	9/06/2011	Mr. Law from Victoria Centre Management	North Point	An odour nuisance suspected generating from the discharge point – Channel T at Watson Road in part of the site area was	1)	The complaint was received by ET on 13 Jun 2011. During the weekly site inspection on 7 and 17 June 2011, there was no any odour impact detected in the site area.	Closed
		Office		related to CWB under Contract no. HY/2009/11	2)	2) According to the site record, there was muddy water discharged from the unknown source at upstream of Channel T during heavy rainstorm. No any site surface runoff to the Channel T and out of site boundary was observed in the inspection.	
					 In order to prevent muddy water washing out to the water body under heavy rainstorm, a silt curtain was installed at the outfall of the channel by Contractor. ET confirmed with the Resident Site Staff that a silt curtain was installed at the outfall of the channel to prevent muddy water washin out to the water body under heavy rainstorm. Besides regular cleaning of refuse in the channel has been conducted by Contractor. A further site investigation on 28 June 2011 revealed that no odour nuisance was detected at the upstream of the Channel T and no source of odour nuisance was identified at site. As such, it was concluded that the source of odour 	In order to prevent muddy water washing out to the water body under heavy rainstorm, a silt curtain was installed at the outfall of the channel by Contractor. ET confirmed with the Resident Site Staff that a silt curtain was installed at the outfall of the channel to prevent muddy water washing out to the water body under heavy rainstorm. Besides, regular cleaning of refuse in the channel has been conducted by Contractor.	
						A further site investigation on 28 June 2011 revealed that no odour nuisance was detected at the upstream of the Channel T and no source of odour nuisance was identified at site. As such, it was concluded that the source of odour nuisance was not related to the Project works.	
					5)	Although no source of odour nuisance was identified at site, the muddy water and dirt from the unknown source at upstream of Channel T may cause a potential smell during low tide and low water flow. Contractor was reminded to remove the silt curtain at the channel on non-rainy day so as to avoid the accumulation of the sediment and dirt in the water channel.	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
110709	09/07/2011	Mr. Au from City Garden Management Office	North Point	A complaint letter to Contractor HY/2009/11 was raised by Cayley Property Management Limit on 9 July 2011 regarding a series of pump breakdown events at seawater intake of City Garden on 4, 6, 7 and 8 July 2011. A lot of rubbish such as plastic bags, nylon bags, nylonwire mesh was observed sucking from the seawater intake at the seawater front of Block 7 of City Garden affecting the operation of seawater pump plant.	2)	Contractor conducted formation works for installation of caisson seawall at C27, C28, C29 and C30 on 4, 6, 7 and 8 July 2011 and no dredging work was conducted during this time period Water mitigation measures of an 80m long silt curtain at the site boundary in front of City Garden Relocation of silt curtain and silt curtain at the outfall of the channel were provided and maintained to accommodate the site works. All vessels are equipped with rubbish collection facilities and disposed the rubbish regularly. Also, daily cleaning actions had been taken by contractor to minimize floating refuse within the site boundary. Moreover, it has been reported several times that discharged from outfall pipeline outside the site boundary near the intake of the pump maybe considered as another source of rubbish generation.	Closed
					4)	Referring to the record provided by Cayley Property Management Limit, the trapped rubbish was unlikely generated from the construction works. It was considered that complaint is invalid and not related to project.	
110710	09/07/2011	Complainant by ICC (ICC no. 1-301520309	North Point	It was received at 00:56 on 10 July 2011. There was complained a derrick barge unloading rockfill material off the shore facing the Harbour Grant HK Hotel causing noise nuisance.	.,	ET confirmed with the Resident Site Staff that the complaint was referred to Contract HY/2009/15 for the loading and unloading of fill material at two barges operation in the sea at around 300m adjacent to Island Eastern Corridor (Oil Street Chainage) where is outside the Site of HY/2009/15 in the period of around 19:45 on 9 July to 1:00 on 10 July 2011.	Closed
					2)	The material loading and unloading operation processed in restricted hours was checked without a valid CNP. It was found that the operation was due to an unexpected water leakage of the hopper barge and considered an incident.	
					3)	According to the incident report provided from RSS on 20 July 2011, around 7:30 pm the barge S22 was inclined slightly and slightly water leakage might occur. Due to marine safety concern, the hopper barge would open the hopper to release the contained materials in order to reduce the weight and stabilize the barge. In consider of slight water leakage, the operator decided to use the nearby Derrick Barge ST32 to help for unload the general fill materials first and the unloading operation was started at around 7:45pm, and end at around 1:00 am. Contractor was reminder to provide frequent check of vessel condition	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	tcome	Status
						so as to prevent recurrent by barge defect	
110723a	Department published a notice I	1) 2) 3)	It was referred by AECOM to ET on 28 July 2011 RSS confirmed that the notice was prepared by Victoria Centre's Management office to their resident and the advice was only given on the extension construction works (for Contract HY/2009/15) to 7am-9pm from Monday to Saturday except Public Holidays and Sundays. As a mitigation measure to minimize the noise nuisance in the vicinity of the residents, rock breaking activities will be				
		4)	started at 8am and is expected to be completed by mid- August 2011. No noise exceedance was recorded at construction noise monitoring station at Victoria Centre on 19 and 25 July 2011 during daytime while breaking and excavation works were undertaken during monitoring.	Closed			
		5)	In conclusion, it was related to the construction works under Contract HY/2009/15 and mitigation measure was provided. The complainant was satisfied with the arrangement and no further complaint was received after proposed measures.				
110723b	23/07/2011	2, Victoria Centre by ICC no. 1-304013959 Conducted at Causeway Bay Typhoon Shelter at 7am on 23 July 2011. She complained that the works shall be started later to minimize the noise nuisance to the vicinity of the residents in early morning With reference to the conductive victoria Centre, no exceeded July 2011 during daytime works were undertaken du As a mitigation measure to the vicinity of the residents started at 8am and is expanding to the vicinity of the residents started at 8am and is expanding to the vicinity of the residents started at 8am and is expanding to the vicinity of the residents of the vicinity of the residents started at 8am and is expanding to the vicinity of the residents of the vicinity of the v	North Point	conducted at Causeway Bay Typhoon Shelter at 7am on 23 July 2011. She complained that	,	It was referred by AECOM to ET on 8 August 2011 With reference to the construction noise monitoring at Vitoria Centre, no exceedance was recorded on 19 and 25 July 2011 during daytime while breaking and excavation	
			As a mitigation measure to minimize the noise nuisance in the vicinity of the residents, rock breaking activities will be started at 8am and is expected to be completed by mid-	Closed			
						In conclusion, it was related to the construction works under Contract HY/2009/15 and mitigation measure was provided. The complainant was satisfied with the arrangement and no further complaint was received after proposed measures.	
110727a	27/07/2011	Mr. Law from Victoria Centre Management Office by ICC no. 1-304616162	North Point	It was complained by Mr. Law from Victoria Centre Management Office on 27 July 2011 regarding construction noise generated by the construction operations of	1) 2) 3)	It was referred by AECOM to ET on 28 July 2011 RSS confirmed to start the rock breaking activities for Contract HY/2009/15 at 8am as a mitigation measure to minimize the noise nuisance in the vicinity of the residents. No noise exceedance was recorded at construction noise	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
				Central-Wanchai Bypass at noon rather than in morning at 7am.		monitoring station at Victoria Centre on 25 July and 4 August 2011 during daytime while breaking and excavation works were undertaken during monitoring.	
					4)	In conclusion, it was related to the construction works under Contract HY/2009/15 and mitigation measure was provided. No further complaint from complainant was received after proposed the mitigation measure.	
110727b	27/07/2011	Ms. Chiu by ICC	North Point	Noise nuisance from the excavation works for the		It was referred by AECOM to ET on 28 July 2011	
		no.1-304615409		Highways Department adjacent to the Victoria Centre was conducted from 7am	2)	With reference to the construction noise monitoring at Vitoria Centre, no exceedance was recorded on 25 July and 4 and 10 August 2011 during daytime while breaking and excavation works were undertaken during monitoring.	
				4	3)	As a mitigation measure to minimize the noise nuisance in the vicinity of the residents, rock breaking activities will be started at 8am.	
	08/08/2011				4)	However, complainant did not satisfy with the response on the noise nuisance from the rock-breaking during morning in front of Victoria Centre and then further complaint via 1823 on 7 August 2011.	Closed
			5)	Highways contacted the complainant on 15 August 2011 that the noisy rock breaking operation had been completed.			
					Rer	marks: There will be counted as two complaints in this complaint log.	
110810	10/08/2011	0/08/2011 Mr. Yip by ICC no. 1 – 306740207	North Point	Muddy water was discharged from work site to the seafront		It was referred by AECOM to ET on 17 August 2011.	Closed
				near Oil Street during heavy rain. The environmental protection measures were not good enough and are needed to rectify.	near Oil Street during heavy rain. The environmental protection measures were not good enough and are needed to	2)	Confirmed with RE, Muddy water was caused by a heap of earth being washed to the sea by heavy rain. The heap of earth was referred as a small stockpile placed close to the seafront in front of Oil Street within the site area under handover transition period from contract HY/2009/11 to contract HY/2009/19. The necessary mitigation measures to protect the small stockpile against rainfall were missing at the time of complaint.
					3)	Due to the missing of mitigation measures to protect the small stockpile during handover transition period, loose material was washed into the harbour when heavy rain came. Muddy water was formed and dispersed in the sea that caused the water quality and visual concern to the public. The complaint was considered as valid. Contractors were advised to relocate the loose materials	

•	and Received By	Complainant	Nature of Complaint	Cui	tcome	Status
					away from the coastline as far as practicable. Any loose material placed which needed to be placed near the coastline shall be properly compacted or covered as appropriate. To avoid any further environmental deficiency, Contractors shall ensure all necessary environmental mitigation measures will not be missing during site area handover.	
26/08/2011	Grand Hyatt and a complainant by ICC	Wan Chai	Construction noise and vibration nuisance generated from the works at Convention Avenue and inside the HKCEC1 reclamation area.	1)	Confirmed with the Resident Site Staff that the construction works were referred to the Contractor HK/2009/01. The Excavator mounted breaker at Convention Avenue and Drilling rig at HKCEC1 reclamation area were the	
				3)	dominant construction noise source during this period. The drilling rig at HKCEC1 reclamation area and excavator mounted breaker at Convention Avenue were then temporary suspended after received the complaint.	
				4)	Investigation revealed that the erected noise barrier (4m cantilevered movable noise barrier for the drilling rig and 1m movable noise barrier for the excavator mounted breaker) were not located close to the plants to provide adequate noise screening.	Closed
				5)	Contractor was advised to avoid concurrent operation of construction plants at site. Further enhancement of movable noise barriers at HKCEC1 and providing noise enclosure for the excavator mounted breaker at Convention Avenue are needed.	
				6)	Further site investigation and checking on 31 August and 7 September 2011 revealed that the implemented noise mitigation measures were in proper and minimize the noise impact.	
26/08/2011	A complaint letter from Mr. Au of Cayley Property of City Garden	North Point	Harbor front adjacent to their cooling water intake suction which caused 3 times of system breakdown of the sea water pump on 9, 22 and 25 August 2011.	1)	It was referred by AECOM to ET on 29 August 2011. Confirmed with the Resident Site Staff that the • construction works were referred to the Contractors HY/2009/11 and HY/2009/19. • The pump is located on the site area of HY/2009/19 • A temporary garbage defender was installed on 23 July 2011 by HY/2009/11 and the shape of the defender was adjusted on 8 August 2011 in order to excluse the outfall.	Closed
		and a complainant by ICC 26/08/2011 A complaint letter from Mr. Au of Cayley Property of City	and a complainant by ICC 26/08/2011 A complaint letter from Mr. Au of Cayley Property of City	26/08/2011 A complaint letter from Mr. Au of Cayley Property of City Garden Wall Cital and a complaint letter from Mr. Au of Cayley Garden Wall Cital and a complaint letter from Mr. Au of Cayley Garden North Point adjacent to their cooling water intake suction which caused 3 times of system breakdown of the sea water pump on 9, 22 and 25	26/08/2011 A complaint letter from Mr. Au of Cayley Property of City Garden North Point System breakdown of the sea water pump on 9, 22 and 25	26/08/2011 Grand Hyatt and a complainant by ICC Construction noise and vibration nuisance generated from the works at Convention Avenue and inside the HKCEC1 reclamation area. Construction noise and vibration nuisance generated from the works at Convention Avenue and inside the HKCEC1 reclamation area. Construction works were referred to the Contractor HK/2009/01. The Excavator mounted breaker at Convention Avenue and limiting ing at HKCEC1 reclamation area and excavator mounted breaker at Convention Avenue were the dominant construction noise source during this period. The Excavator mounted breaker at Convention Avenue were the dominant construction noise barrier for the drilling rig at HKCEC1 reclamation area and excavator mounted breaker at Convention Avenue were then temporary suspended after received the complaint. Investigation revealed that the erected noise barrier for the drilling rig and the CKEC1 reclamation area and excavator mounted breaker were not located close to the plants to provide adequate noise screening. Contractor was advised to avoid concurrent operation of construction plants at site. Further enhancement of movable noise barriers at HKCEC1 and providing noise enclosure for the excavator mounted breaker at Convention Avenue are needed. Edi/08/2011 A complaint letter from Mr. Au of Cayley Property of City Garden A complaint letter from Mr. Au of Cayley Property of City Garden Harbor front adjacent to their cooling water intake suction which caused 3 times of system breakdown of the sea water pump on 9, 22 and 25 August 2011. Harbor front adjacent to their cooling water intake suction which caused 3 times of system breakdown of the sea water pump on 9, 22 and 25 August 2011. The pump is located on the missing during site area and excavator mounted breaker at Convention on the contractors HY/2009/11 and HY/2009/11 and the shape of the definition massures were in proper and minimize the noise massures were in proper and minimize the noise massures were in proper and minimize the

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome		Status
	·	,				team), contractor of HY/200911 and HY/2009/19 and IECon 29 August 2011. Inspection report of it was submitted to RSS on 19 September 2011.	
						 Daily cleaning near the water intake was conducted twice a day by contractor HY/2009/19. 	
						 In response to City Garden request, the contractors have set up the temporary garbage defender in function and collect the floating refuses, but cannot eliminate all refuses, in particular the refuse coming from the seabed 	
					2)	According to the complaint letter from Cayley Property, the outcomes of the preventive measures were not complying wih their expectation.	
					3)	During on-site inspection, floating refuses observed occasionally outside the garbage defender. No conclusion could be made for the source of these floating refuses. On the other hand, some of the refuses were observed floating behind the garbage defender during investigation.	
					4)	All daily cleaning actions had been taken by contractor to minimize floating refuse inside the construction site.	
					5)	It was noted that the cooling water intake was accessible to the public. As such, fish breeding and fishing activities were observed even though a notice has already hoisted. Also, tripping of rubbish by the passers-by could result in a lot of rubbish accumulated around the intake point.	
					6)	Referring to the record provided by CPML, there were a lot of nylon/ plastic bags and nylon wire mesh that matched those rubbishes generated from the public activities.	
					7)	Contractors have fulfilled the requirement of site cleanness and no exceedance was recorded during Water Quality Monitoring. It is consider the cause of this complaint is not related to project and environmental issue in this project as well. No more complaint received after ad-hoc inspection	
111014	14/10/2011	The complainant, Ms. Tam complained via hotline 1823	Wan Chai	The polluted fumes and exhaust from the excavation by sub-contractor of CEDD on pedestrian way outside no.25 Harbour Road (in front of the Harbour Centre)	1)	RSS notified ET to carry out investigation on 17 October 2011. ET confirmed with the Resident Site Staff that the location of the excavator was within site area of Contract no. HK/2009/02 undertaking the water cooling main reprovision works along the Harbour Road. The plants including the excavator have been checked before using	Closed

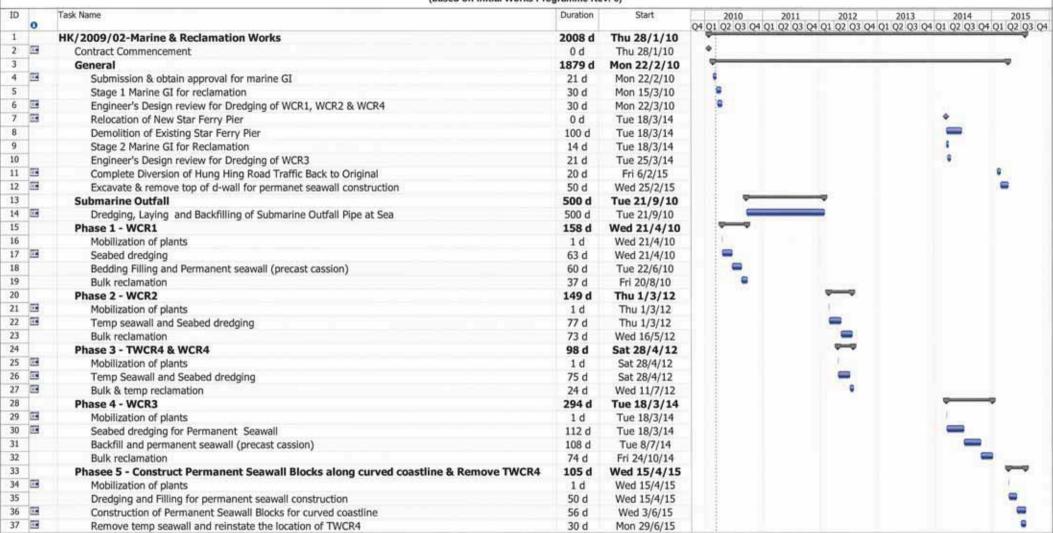
Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					at the site. However, the polluted fumes and exhausted from the excavator was caused due to insufficient maintenance of the plant after using at site. 3) After receiving the complaint, the excavator was then removal off-site for checking and maintenance works on 17 October 2011. 4) Contractor was reminded to enhance regular checking and maintenance to all plants at site. 5) RSS has replied to the complainant on the arrangement of the measures taken on 17 October 2011. Complainant was satisfied with the response and follow-up action taken by the Contractor.	
111104	04/11/2011	Mr. Liu from LCSD complained via Contractor Complaint Hotline	Wan Chai	Complain about a tree near the site of pipe installation works outside Wan Chai Swimming Pool at Harbour Road, the status is not healthy and roof ball of two trees inside the site near Renaissance Hong Kong Harbour View Hotel at Convention Avenue were half cut.	 ET confirmed with the Resident Site Staff that A tree near the site of pipe installation works outside Wan Chai Swimming Pool at Harbour Road is the Tree no. TA1122 under Contract no. HK/2009/02. Leaves of a branch of this tree were shrivelled. Two trees inside the site near Renaissance Hong Kong Harbour View Hotel at Convention Avenue are the tree nos. A160 and A161 under Contract no. HK/2009/01. Part of roof ball of these two trees was covered by the metal plate. Independent Tree Specialists for these two inspected the trees. Contractor HK/2009/01 has taken the measure as recommend downgrading the soil level around the trunk base. Reinstating of the ground works will be conducted in mid-December 2011. For the tree no. TA1122 under Contract no. HK/2009/02, the brown leaves were removed and fenced the tree with orange net is provided to prevent damage of tree trunk by construction works. The distance between the tree and the edge of the trench is kept approximate 2m. Two Contractors were reminded to carry out regular watering to the trees within their site area. 	Waiting RSS respond
111106	06/11/2011	Police officer	Wan Chai	Construction noise generated from the site at about 6:30 a.m on 6 November 2011 and require to stop the machine operation	According to the information reported by Contractor, one BC cutter and hoist were operated for Diaphragm Wall construction of Shatin-Central Link to inspect bentonite pipes and ensure no damages and all the joints are tightened in good position. Then, the subcontractor for Diaphragm wall, SAMBO Korean foreman stopped the engine of the BC cutter immediately. The police officer recorded the details and HKID number of the foreman and then left. Due to the different language communication between the police officer and the Korean foreman, no	Keep in view for three months from the date of complaint recevied

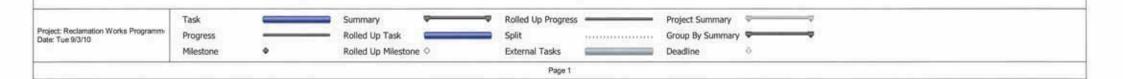
Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
-					2)	CNP was checked by the police officer. ET confirmed with the Resident Site Staff that same issue was also raised out by RSS at about 7:00a.m on the same day. Besides, it was confirmed that there is no valid Construction Noise Permit for the conducted construction works in the period between 2300 and 0700.	
					3)	Due to insufficient communication between Contractor HK/2009/01 and their Korean Sub-contractor, Korean Sub-contractor had not notified to Contractor before carrying out the inspection of the BC cutter, hoists and bentonite pipes at about 6:00a.m to ensure no damages and all the pipe joints should be tightened and in good position.	
					4)	Contractor was advised to enhance the communication between Contractor and sub-contractor and provide sufficient environmental training to all foreman and operators on restricted hour operation. Futhermore, Construction Noise Permit should be checked and in place for the construction works during restricted hour	
					5)	This complaint was considered in relation to the conducted construction works during restricted hours without valid Construction Noise Permit. No more construction works were conducted during night time period. The construction works will be conducted in accordance with the time period stated in valid CNP. This complaint will be kept in view of any follow-up action from the relevant government activities.	
120405	05/04/2012	N/A	North Point	A complaint regarding excessive noise from construction sites of CBTS was observed daily before 7:30am except on public holidays, and the noise source was mainly from piling works. The complainant requested that construction works should start after 8:30am to avoid nuisance to nearby residents and a speedy follow-up and reply.	3)	RSS notified ET on 5 April 2012. ET confirmed with the Resident Site Staff that no piling works were performed during the concerned period. After reviewing the results of noise monitoring (M2b and M3a), no exceedance was recorded during daytime period and the noise level was below 75dB(A). Site inspection for HY/2009/15 was conducted on 10 April 2012. The condition of noise mitigation measures around CBTS was found satisfactory. RSS confirmed that no pilings were performed during the concerned period. The major works included drilling, diaphragm wall construction and	Closed
					4)	excavations. HyD made a reply to the complainant on 16 April 2012 via 1823. HyD replied that the current works at CBTS were drilling, diaphragm wall construction and deep excavations. In order to minimize the noise generated	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					from the above works, the Contractor had erected temporary noise barriers and provided noise blankets on plants. RSS would continue to work with the Contractor on the effectiveness of the environmental mitigation measures implemented on site. No further complaint was received after the response.	
130308	06/03/2013	ICC Case#1- 407181502	Tin Hau	A complaint regarding the dropping of fine rock material into surrounding waterbody was observed during rock breaking operation with two excavators in active operation at the Eastern Breakwater of Causeway Bay Typhoon Shelter near the North Point lighthouse.	RSS notified ET on 8 March 2013 ET confirmed with RSS that excavation works, installation of buoy, flashing light and silt curtain and dredging works were undertaken at Eastern Breakwater during the concerned period on 6 March 2013. One backhoe equipped with breaker and one derrick barge were confirmed in operation while another backhoe was at idle during the concerned.	Closed

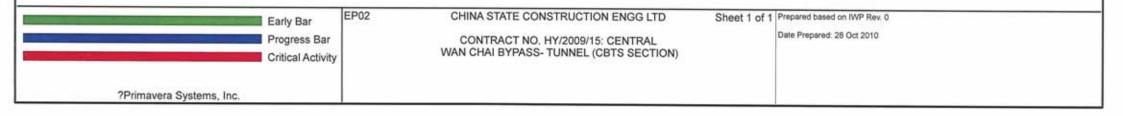
Appendix 10.1

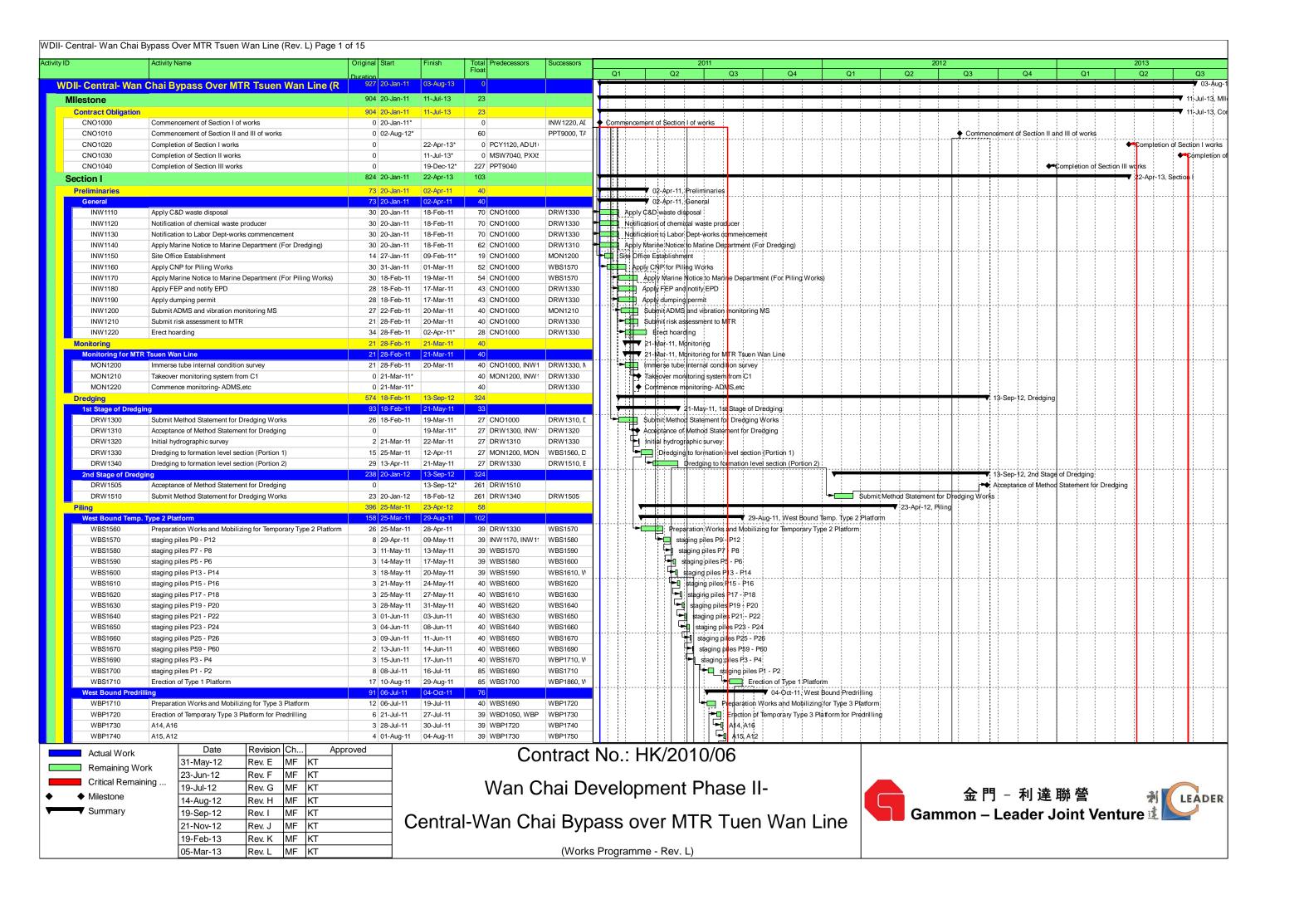
Construction Programme of Individual Contracts

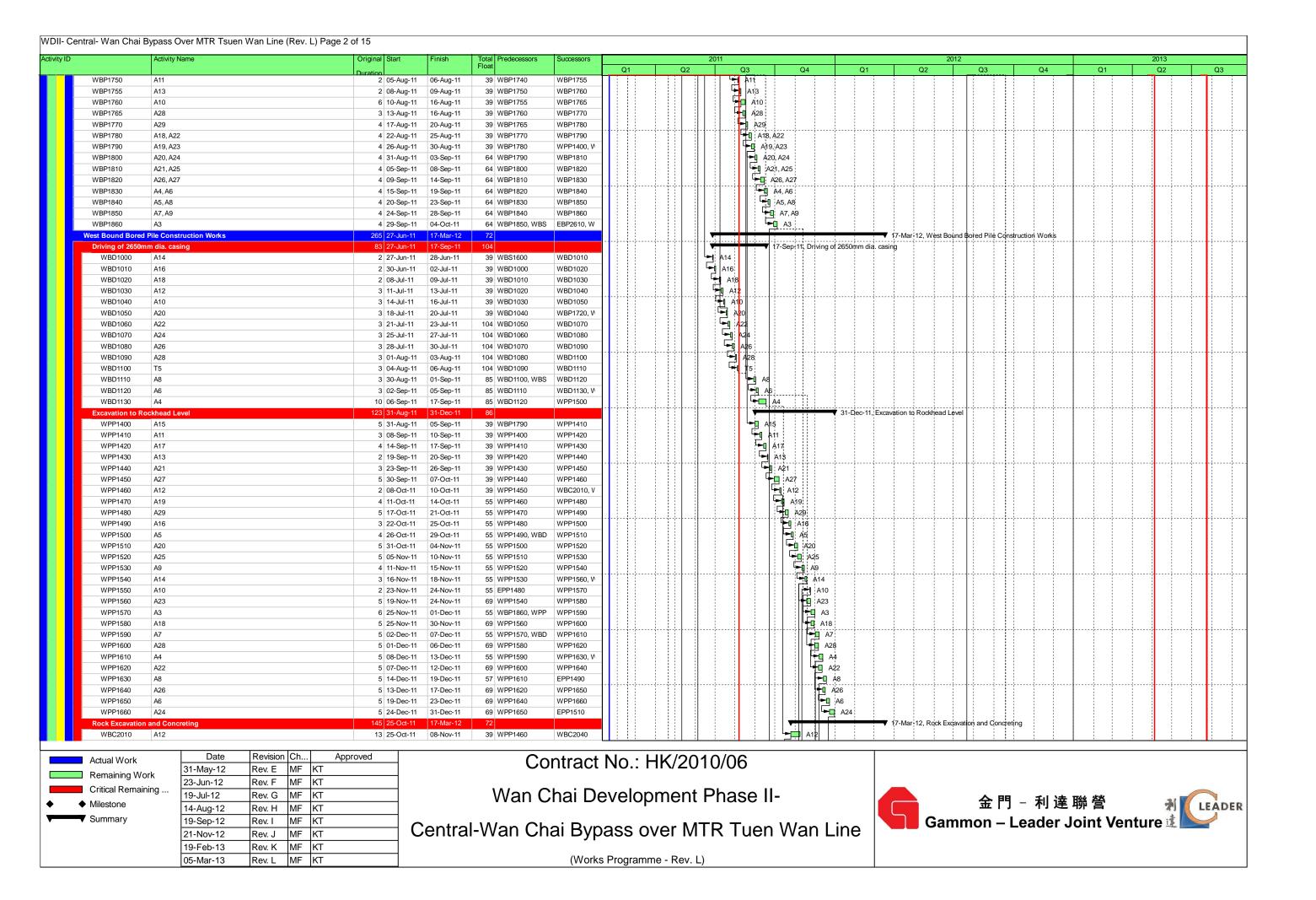

Contract No. HK/2009/01

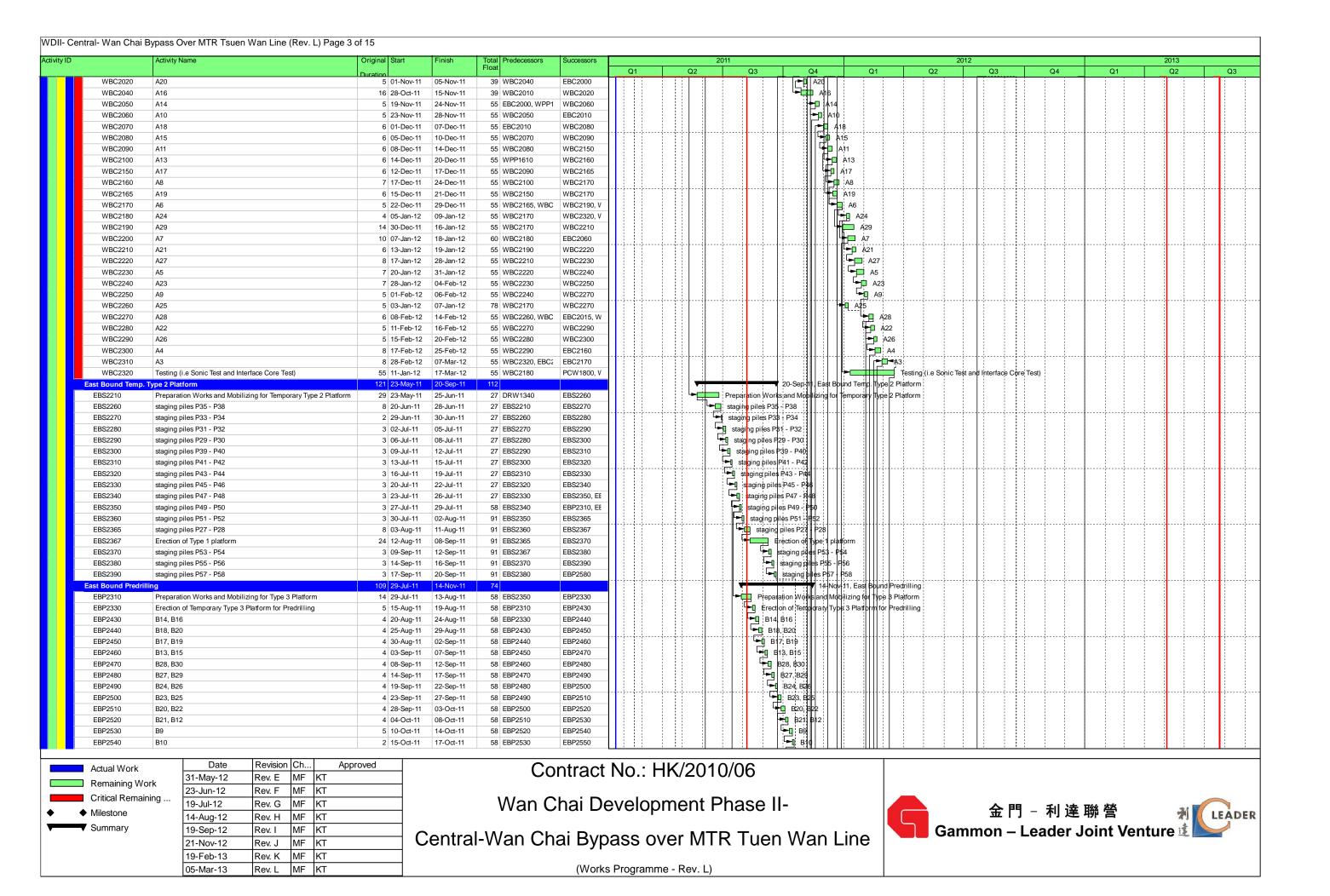

Contract Title: Wan Chai Development Phase II - Central - Wan Chai Bypass at HKCEC

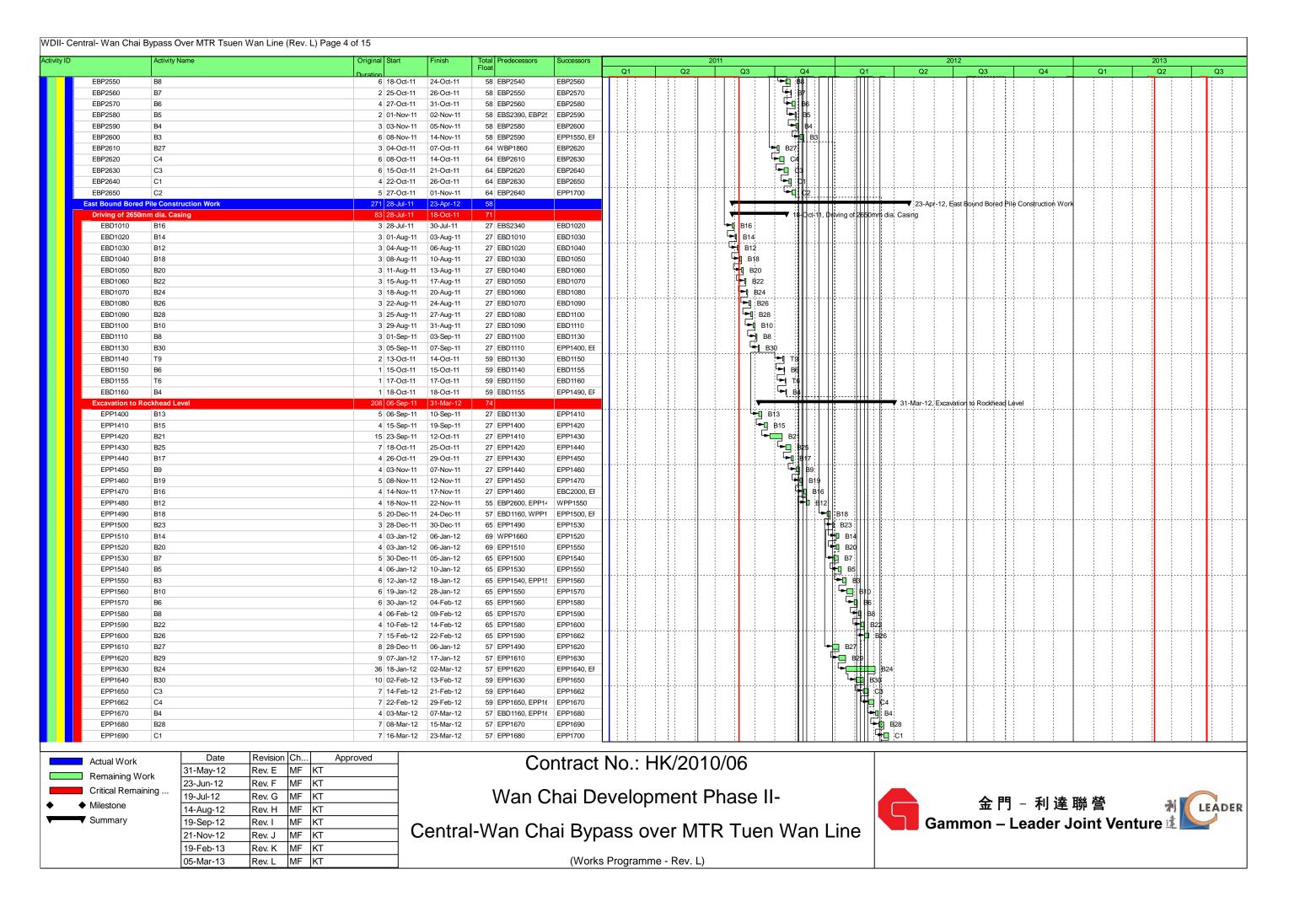
Working Programme for Marine Works (Dredging and Backfilling)

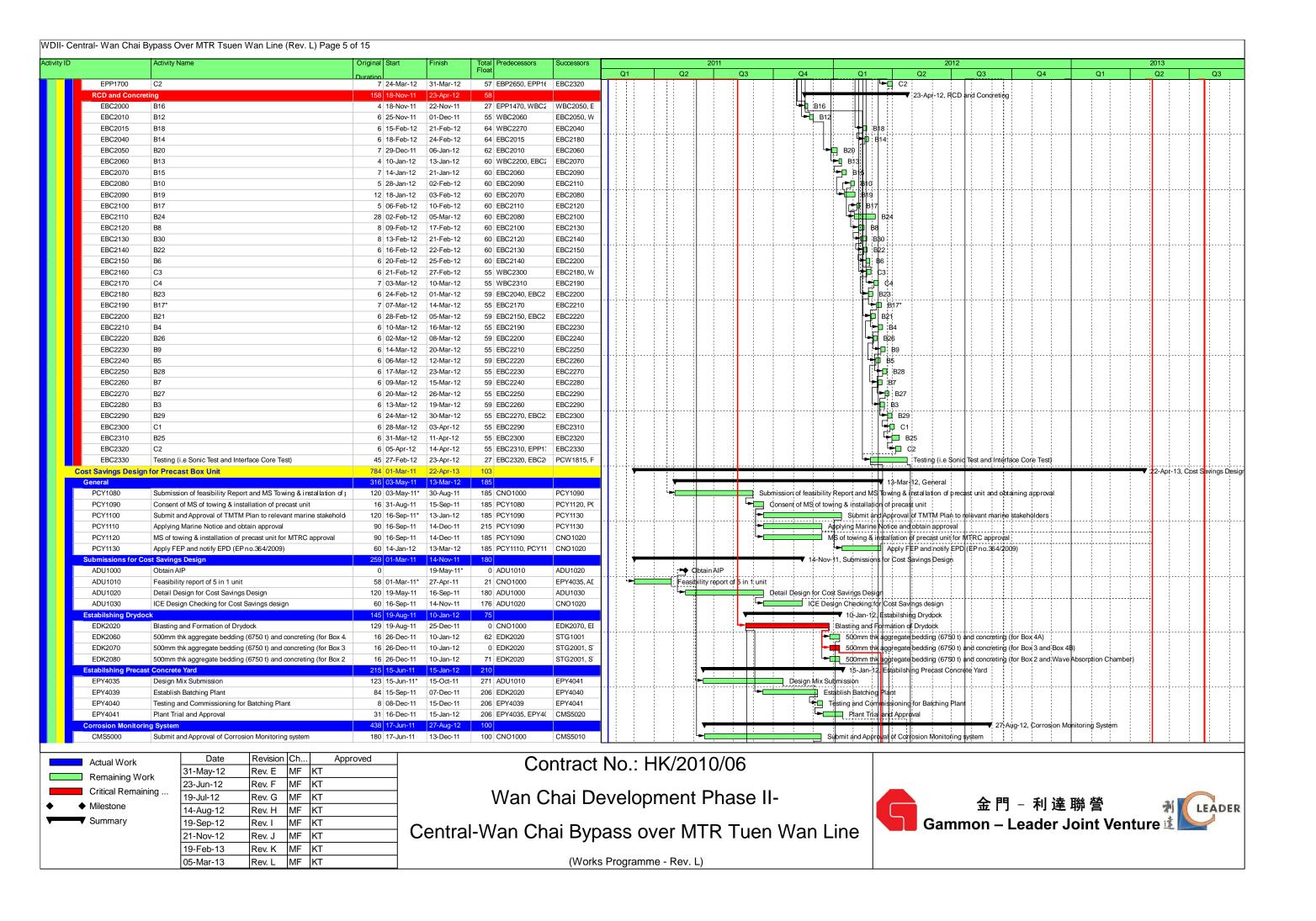

ACTIVITY	START	FINISH	2010	2011	2012	2013
ACTIVITI	SIAKI	FIMSH	Feb Mar Apr Mar Jun Jul Aur Sep Oct No De	Jan Feb MarApaMa Jun Jul Au Sep Oct No De	Jan Feb Ma ApaMa Jun Jul Au Sep Oct No De	Jan Feb Mai AprMai Jun Jul Aus Sep Oct No Dec
Submissions before Works Commencement						
Submit silt curtain deployment plan	31/3/10	31/3/10	•			
Submit silt screen deployment plan	31/3/10	31/3/10	•			
Submit measures to mitigate noise impact	31/3/10	31/3/10	•			
Cross Harbour Watermains from WCN to TST (DP6)						
Trench dredging for marine watermains installation	29/4/10	28/10/10				
Backfilling for watermain	28/1/11	14/12/11				
Reclamation Works at HKCEC Water Channel (DP3)						
Dredging at HKCEC Water Channel (Western Part)	1/6/10	1/8/10				
Backfilling to +3.5mPD (Western Part)	17/8/10	6/2/11		224		
Dredging at HKCEC Water Channel (Middle Part)	2/8/10	6/1/11				
Backfilling to +3.5mPD (Middle Part)	21/2/11	1/6/11				
Dredging at HKCEC Water Channel (Eastern Part)	1/12/12	31/12/12				
Backfilling to +3.5mPD (Eastern Part)	16/1/13	30/4/13				

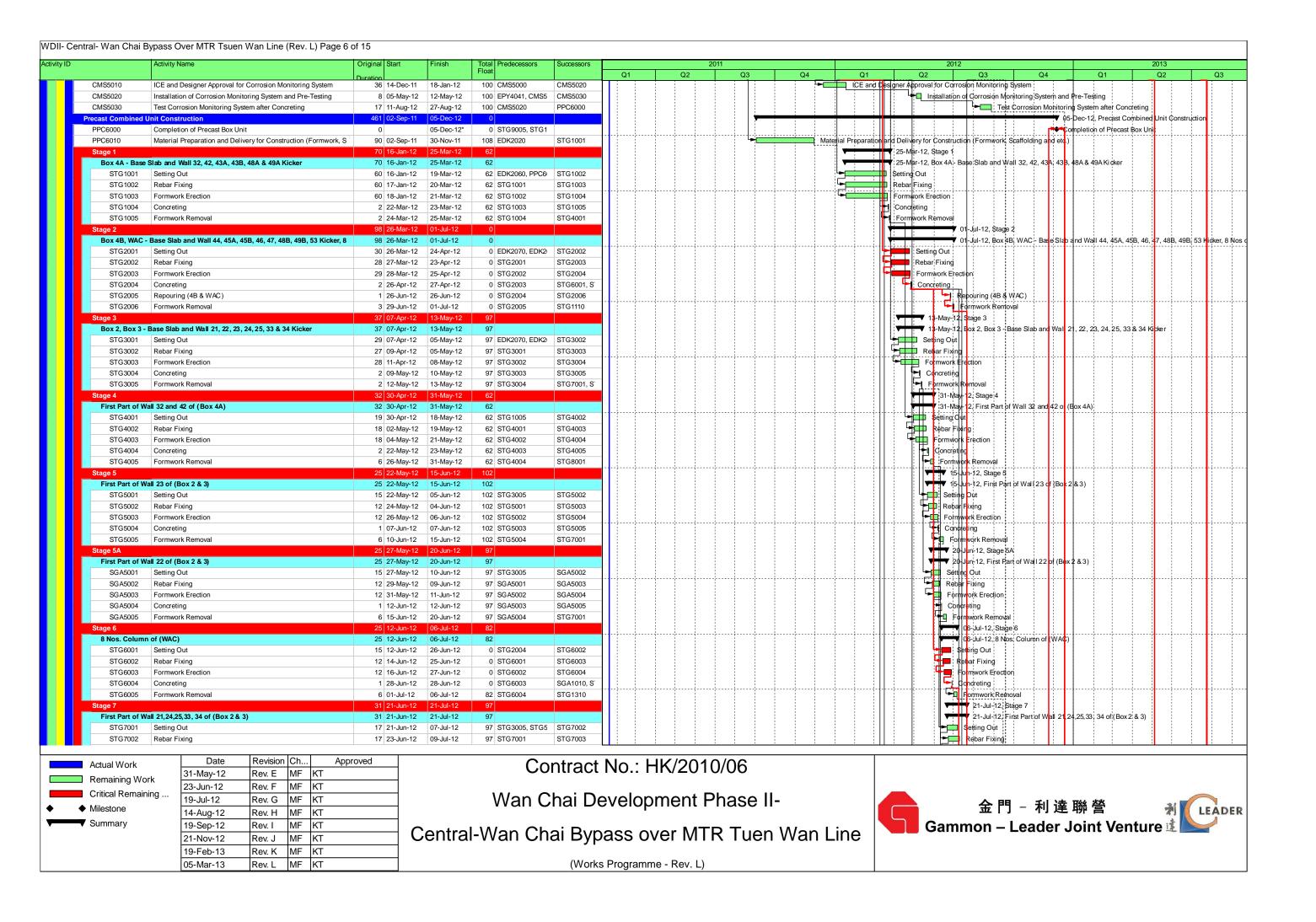

Dredging & Reclamation Works Programme Summary (based on Initial Works Programme Rev. 0)

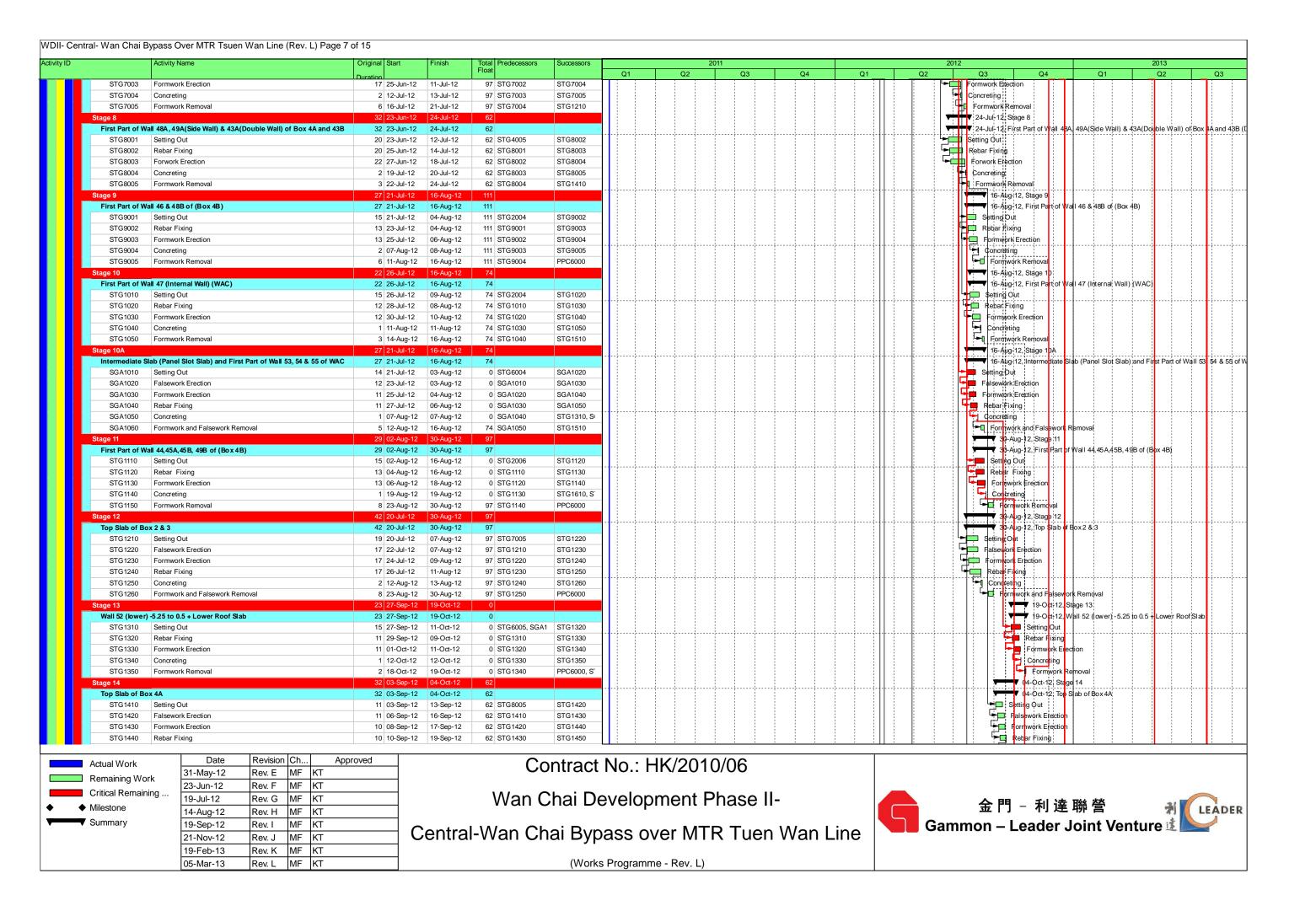


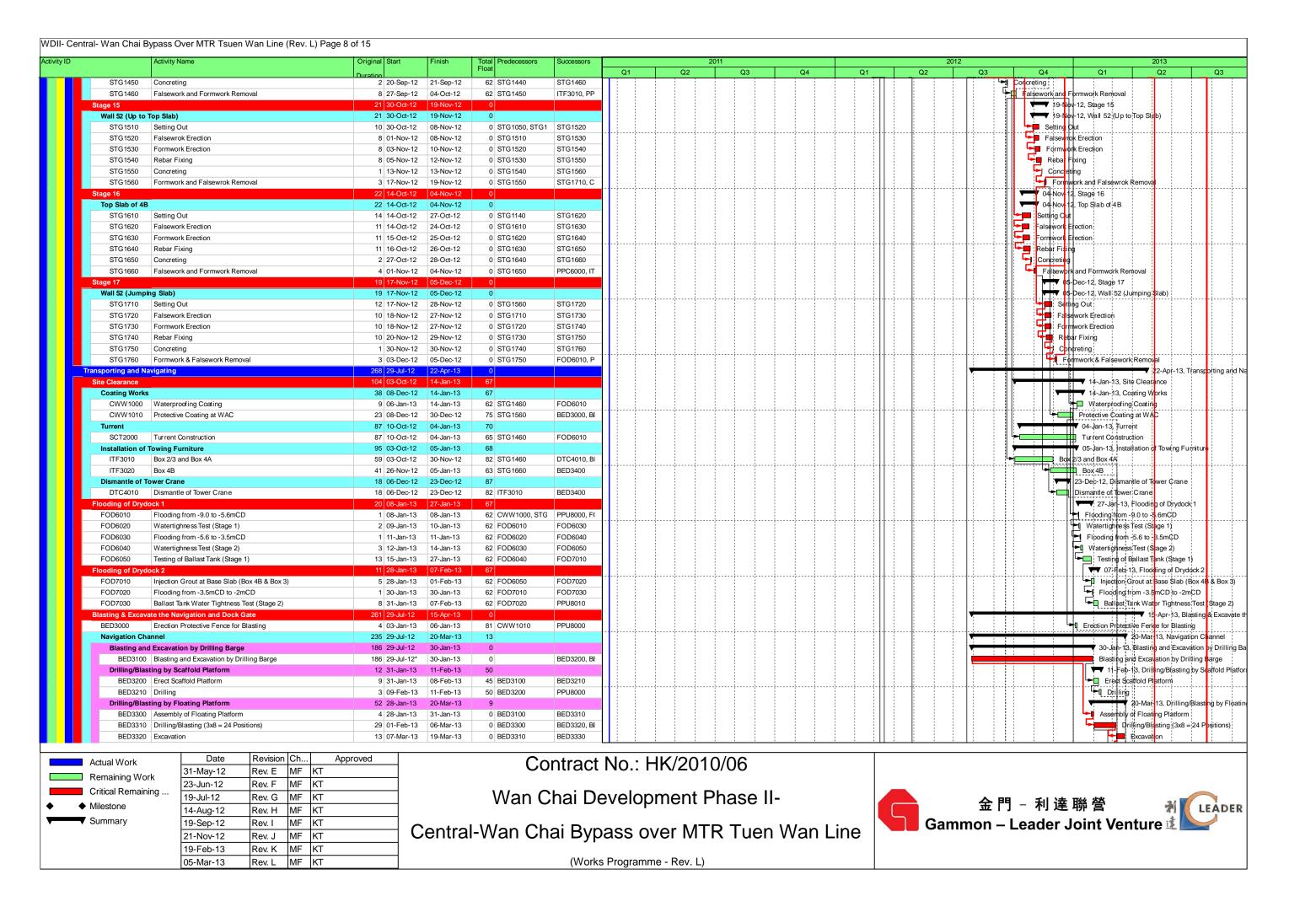


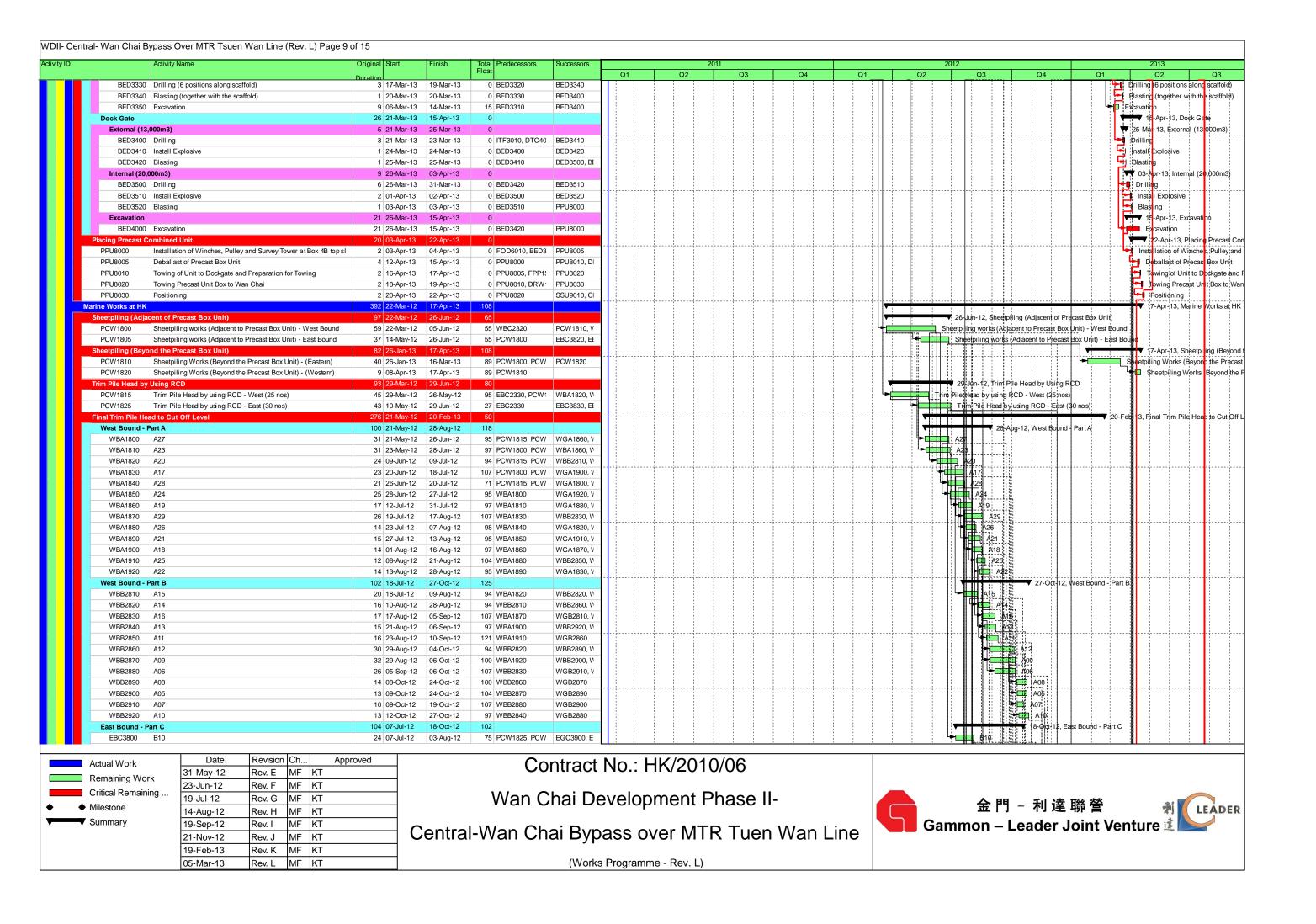

Activity ID	Cal	Activity Description	Orig	Early Start	Early Finish	2010 2011	2012	2013	2014	2015	2016	2017
CBR1E (T	S1 Area		501	Ottare	Timon							
105	1	TCBR1E(TS1)-dredging+rockfill(prep. for seawall)	86	03DEC10*	26FEB11	TCBR1E(TS	1)-dredging+rock	dill(prep. for se	awall)			
110	1	TCBR1E (TS1)-temporary reclamation	69	28JAN11*	06APR11		TS1)-temporary re	All the second s				
155	1	TCBR1E (TS1)- removal of temporary reclamation	27	30JAN12*	25FEB12				emporary reclama	ation		
CBR4					*			,	inportary resident			
100	1	Maintenance dredging for navigation safety for	7	20NOV10*	26NOV10	Maintenance dre	edging for naviga	tion safety for	relocation of RHK	YC mooring at	Area B	
CBR2 + TO	CBR3 (TS2 Area)								y a mooning at		
115	1	TCBR2&TCBR3(TS2)- Maintenance dredging for	5	15NOV10*	19NOV10	ITCBR2&TCBR3(TS2)- Maintenand	ce dredging for	navigation safety	at Area A for r	elocation of com	mercial ve
117	1	TCBR2&TCBR3(TS2)-dredge+rockfill seabed	64	16DEC11*	17FEB12				+rockfill seabed			
120	1	TCBR2&TCBR3(TS2)temporary reclamation	115	26FEB12*	19JUN12				temporary reclam			
160	1	TCBR2&TCBR3(TS2-removal temporary reclamation	57	18AUG13*	13OCT13				BR2&TCBR3(TS		orary reclamatio	n
CBR1W (T	S4 Are	a)									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CO.
125	1	TCBR1W(TS4)-dredging+rockfill(prep. for seawall)	40	19DEC10*	27JAN11	■TCBR1W(TS4)-dredging+rockt	fill(prep. for sea	wall)			
130	1	TCBR1W(TS4)temporary reclamation	68	28JAN11	05APR11	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	S4)temporary					
165	1	TCBR1W(TS4)removal temporary reclamation	26	270CT13*	21NOV13			101	CBR1W(TS4)re	moval tempora	ry reclamation	
PCWAE									1	*	•	
135	1	TPCWAE-dredging+rockfill(prep. for seawall)	55 (03DEC10*	26JAN11	TPCWAE-dree	dging+rockfill(pre	ep. for seawall)				
140	1	TPCWAEtemporary reclamation	77	27JAN11	13APR11	TPCWAE -	temporary recla	mation				
170	1	TPCWAEremoval temporary reclamation	28	28SEP13*	25OCT13			ETT	PCWAEremoval	temporary recla	amation	
PCWAW					***							
145	1	TPCWAW-dredging+rockfill(prep. for seawall)	47	28OCT13*	13DEC13				TPCWAW-dredgin	ng+rockfill(prep	o. for seawall)	
150	1	TPCWAWtemporary reclamation	83	14DEC13	06MAR14				TPCWAWte			
175	1	TPCWAWremoval temporary reclamation	50 (02JUL15*	20AUG15		TP		I temporary recla			

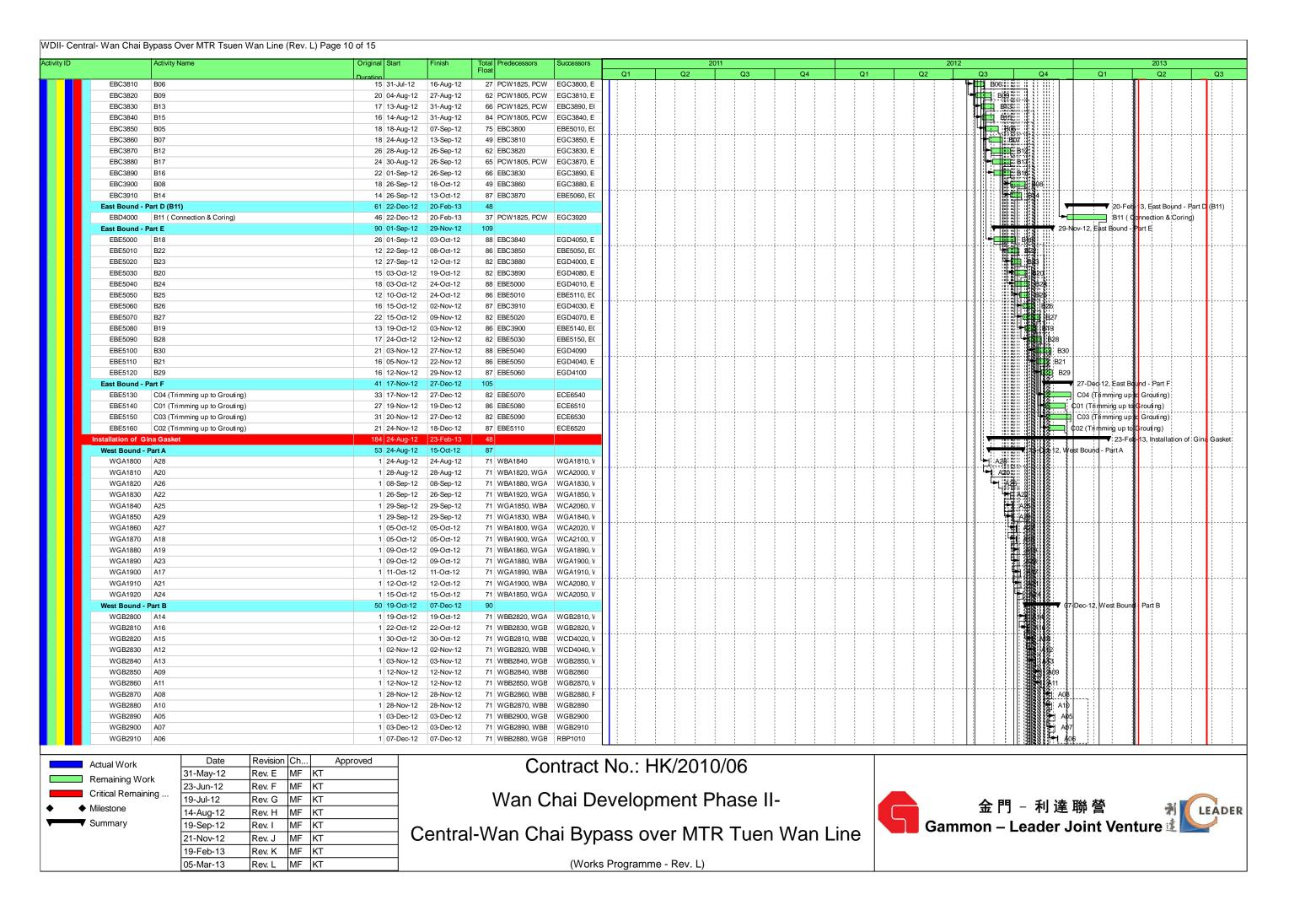


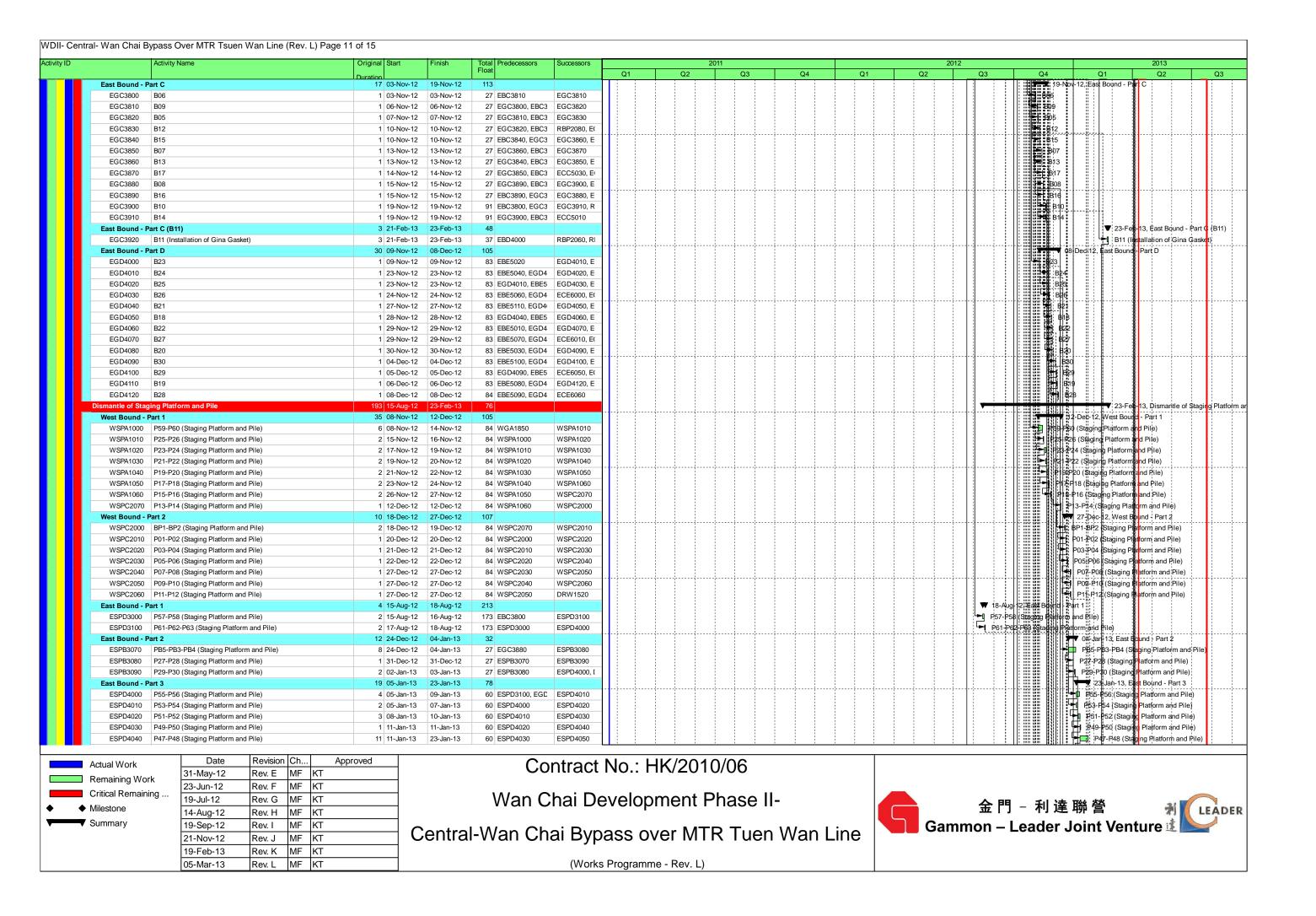


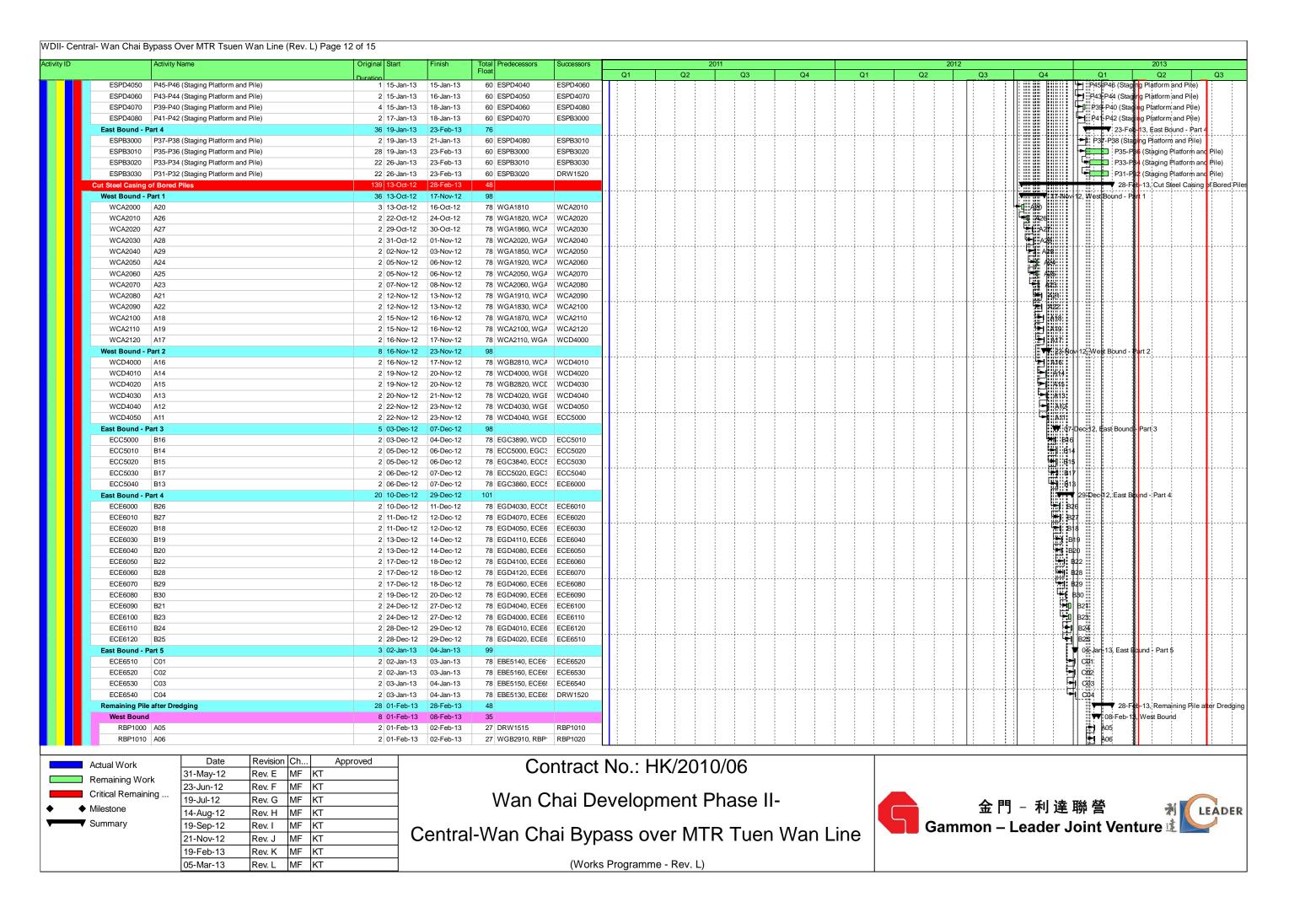


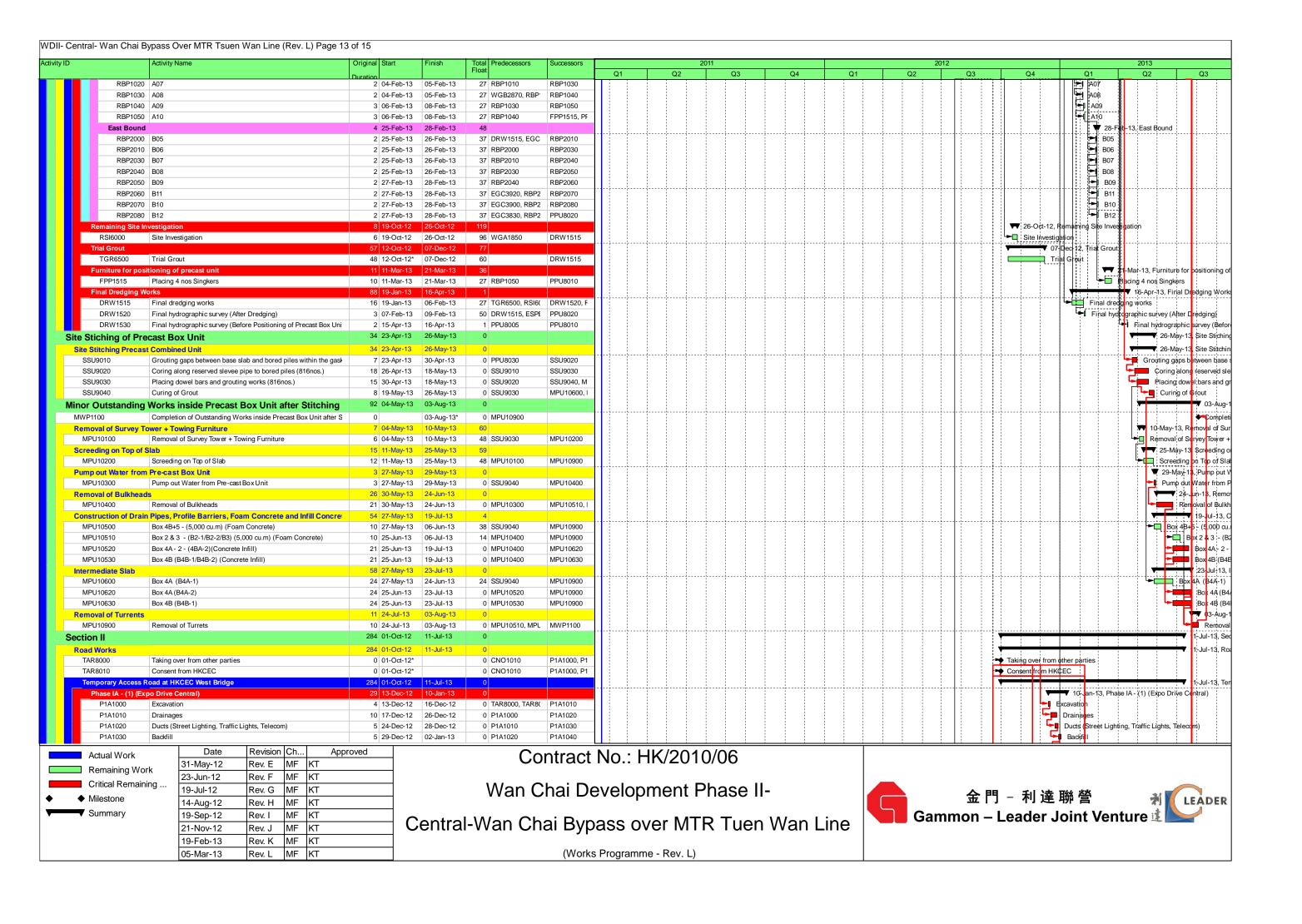


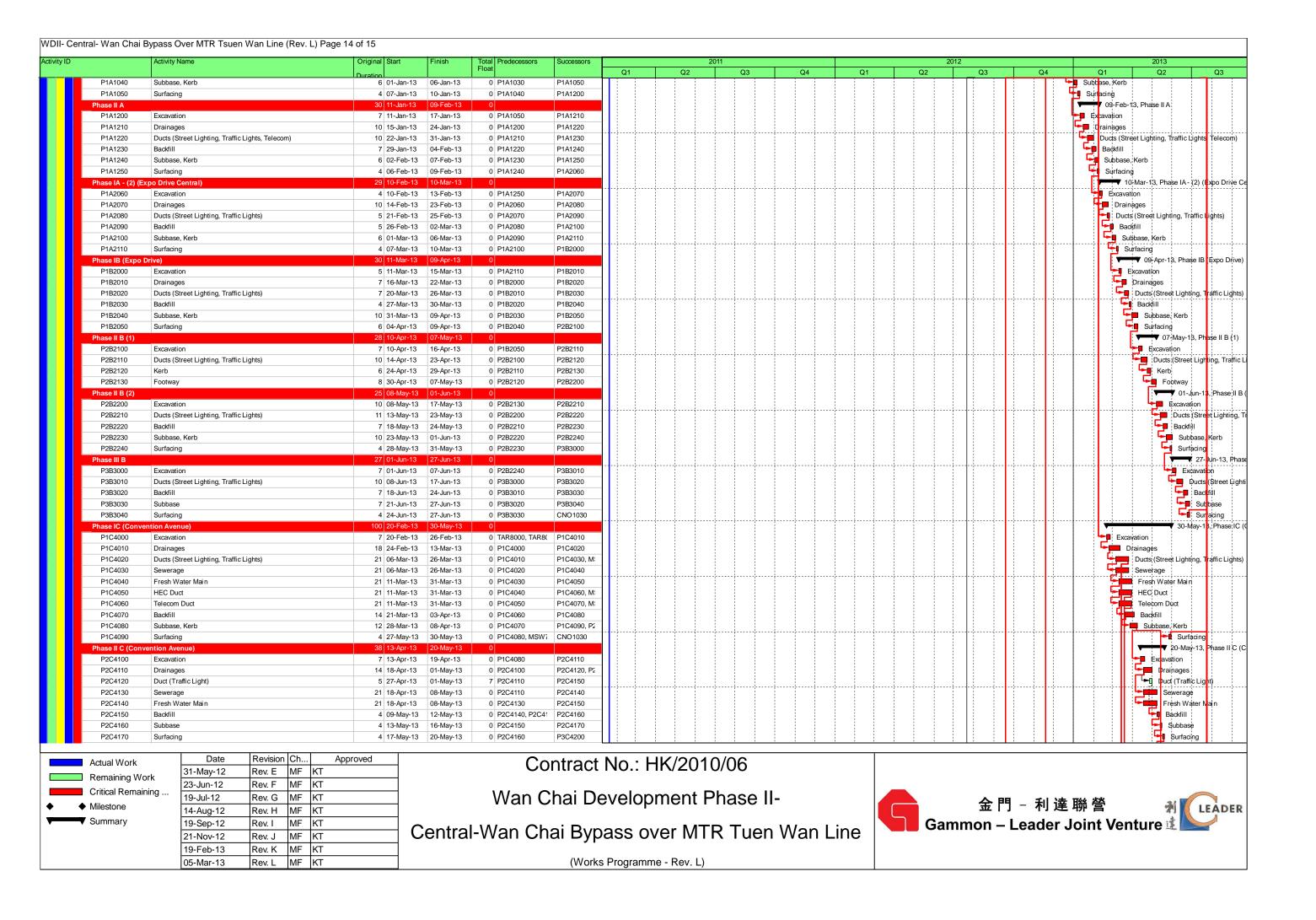


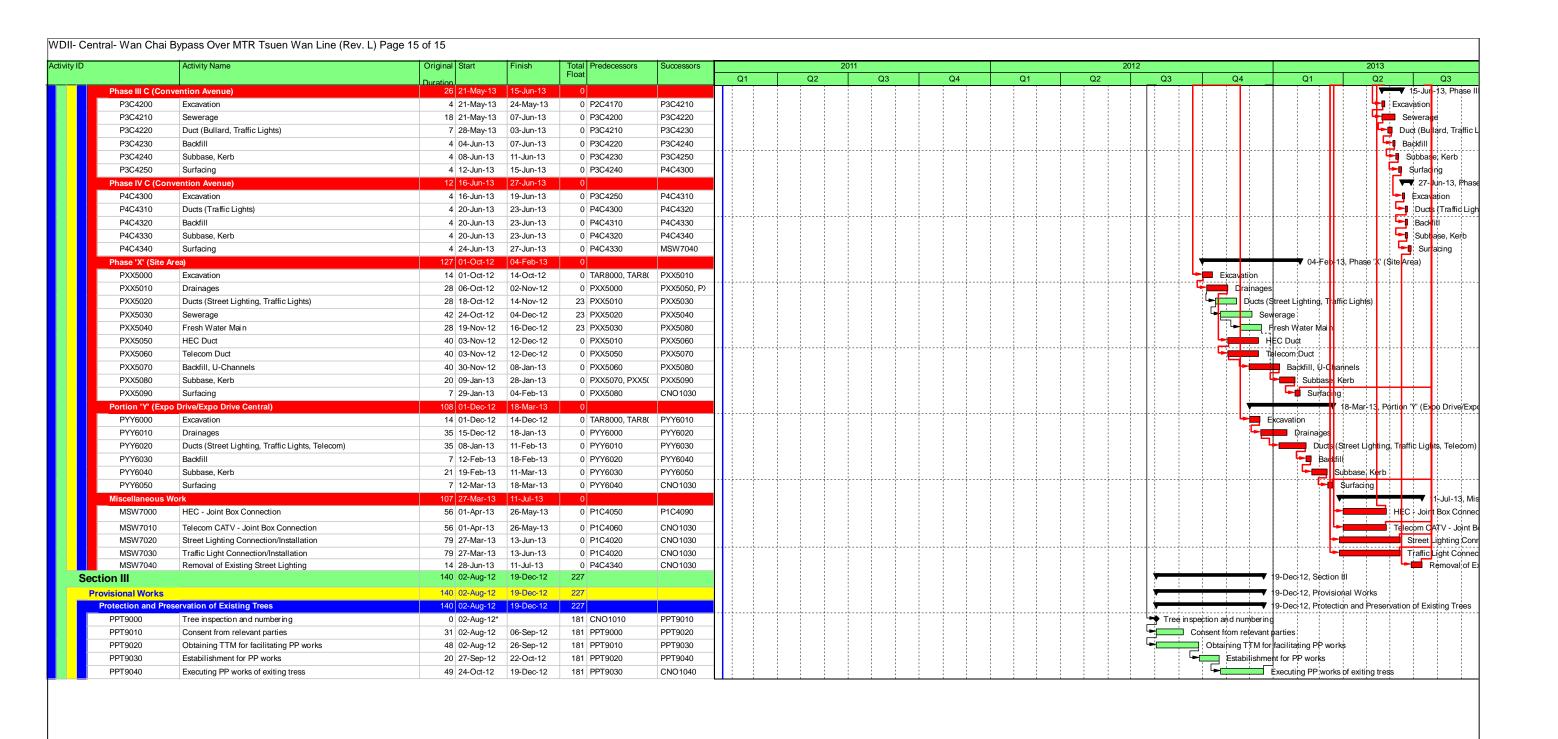












Actual Work
Remaining Work
Critical Remaining ...

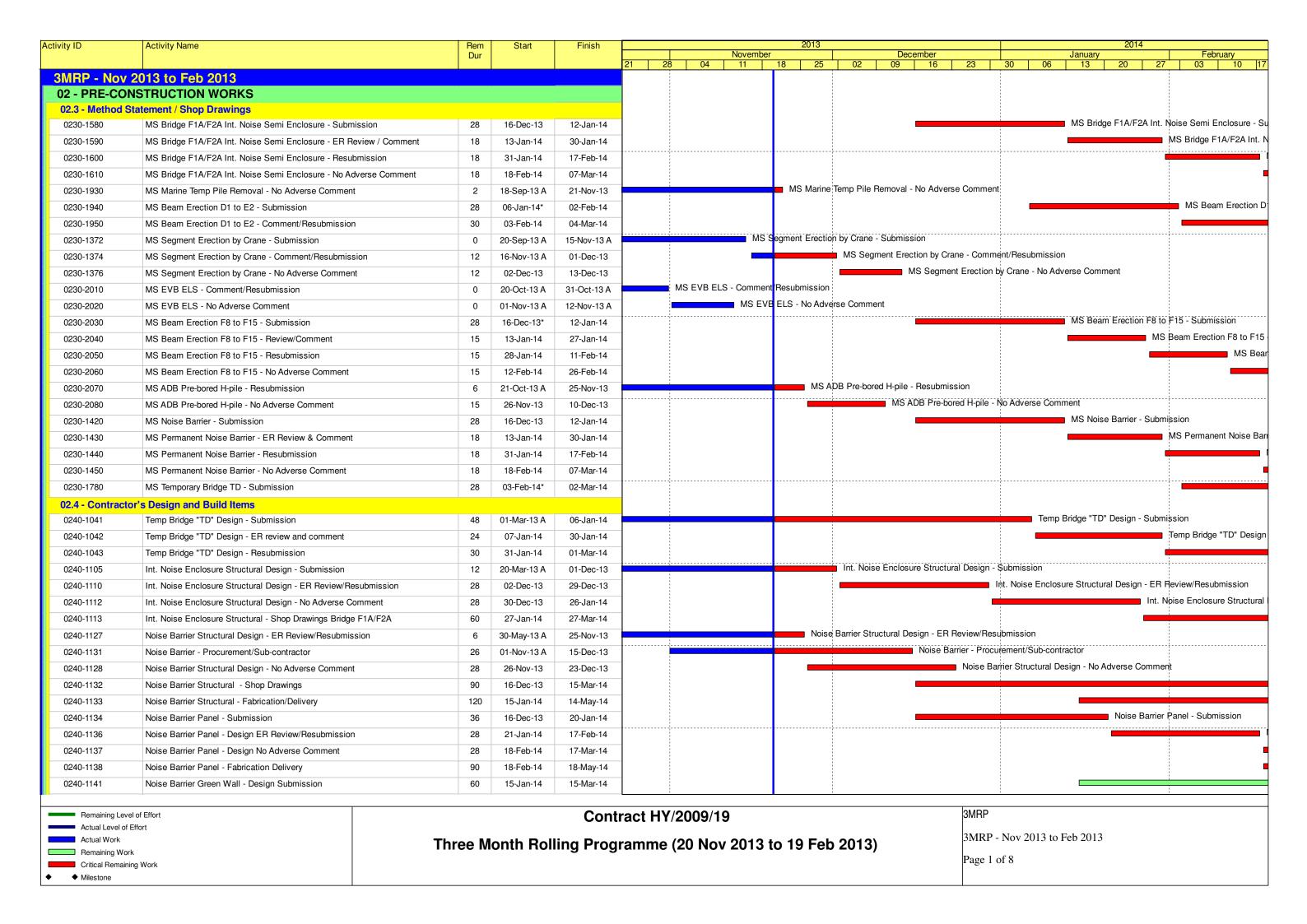
Milestone

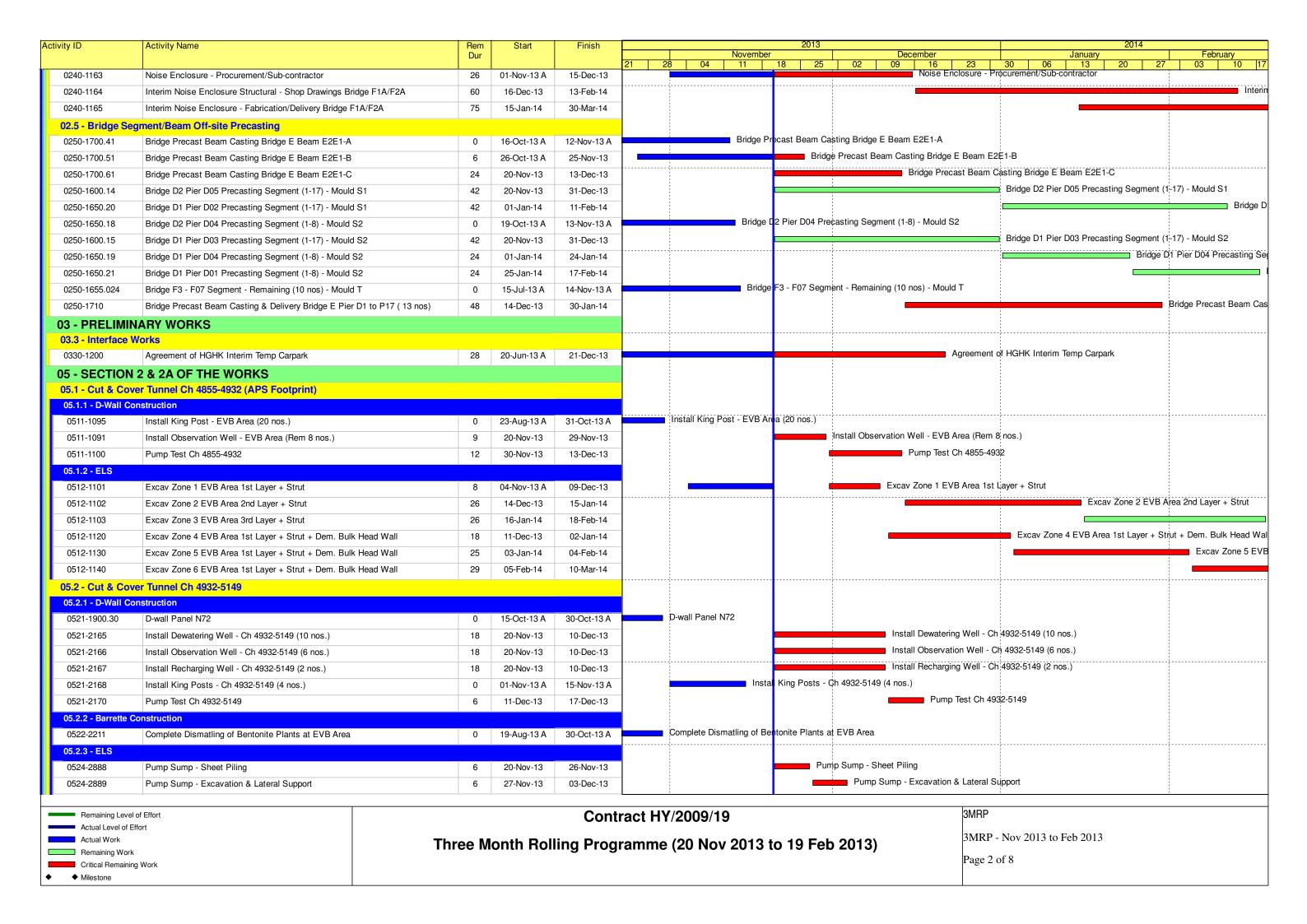
Summary

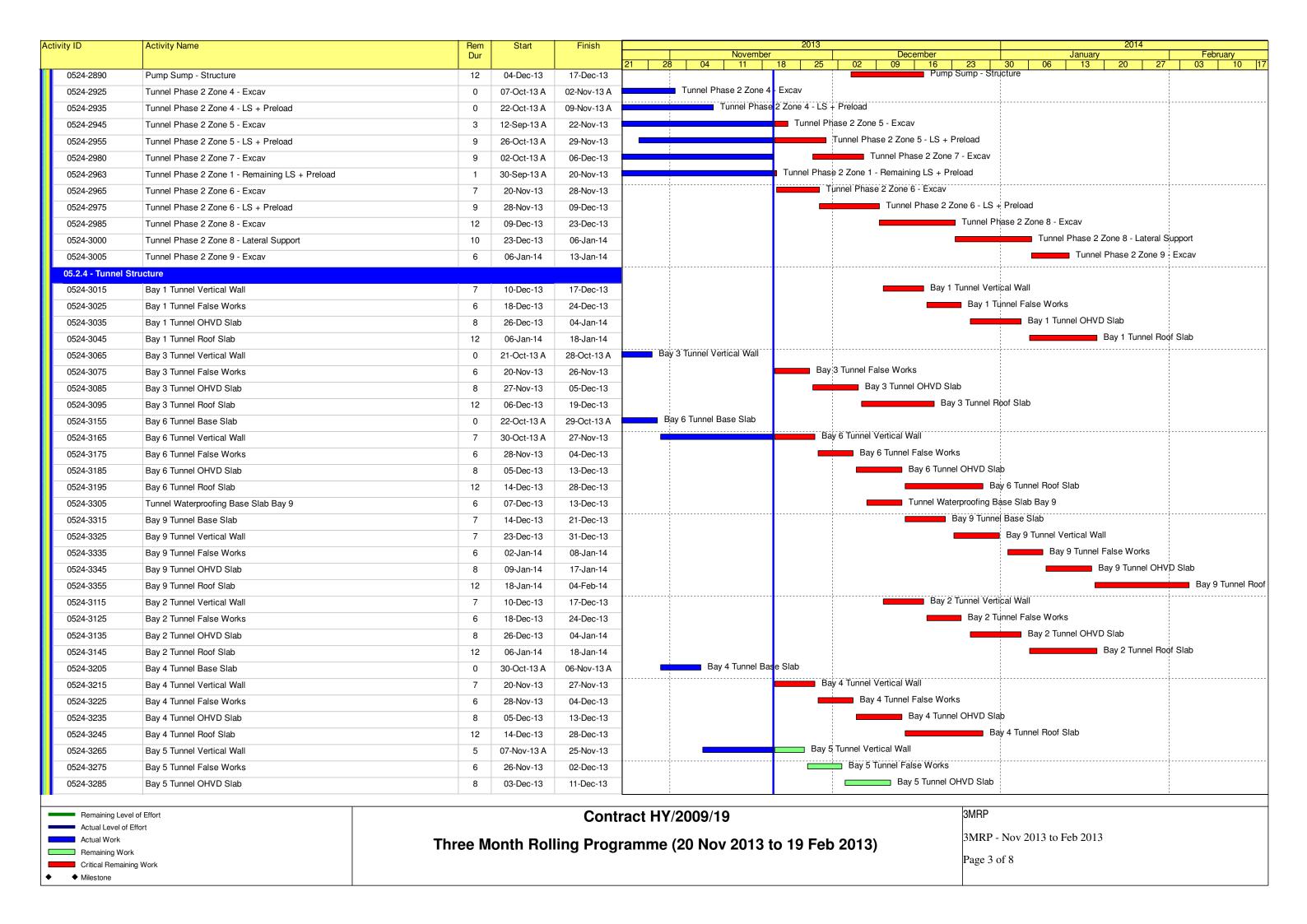
Date	Revision	Ch	Approved
31-May-12	Rev. E	MF	KT
23-Jun-12	Rev. F	MF	KT
19-Jul-12	Rev. G	MF	KT
14-Aug-12	Rev. H	MF	KT
19-Sep-12	Rev. I	MF	KT
21-Nov-12	Rev. J	MF	KT
19-Feb-13	Rev. K	MF	KT
05-Mar-13	Rev. L	MF	KT

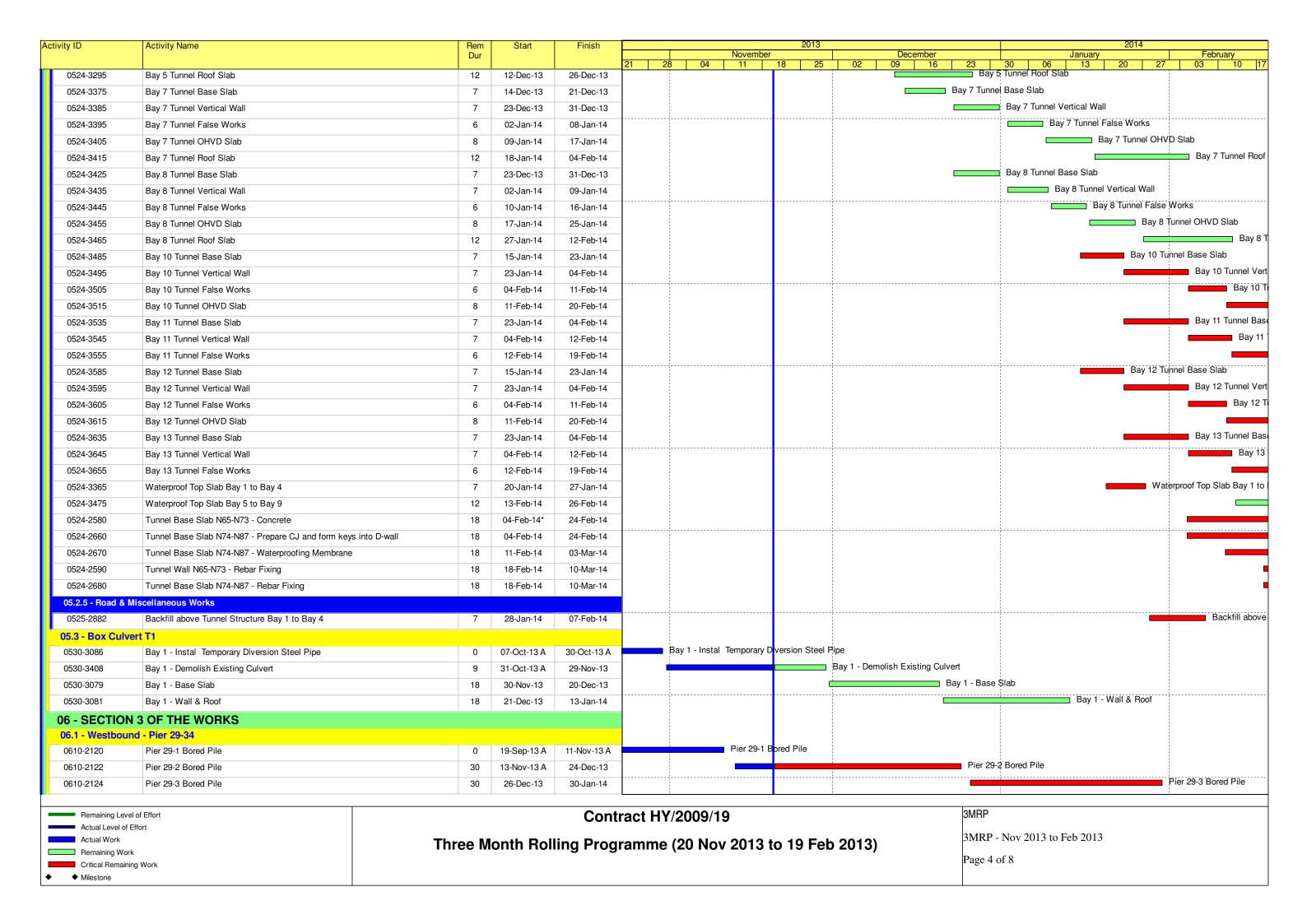
Contract No.: HK/2010/06

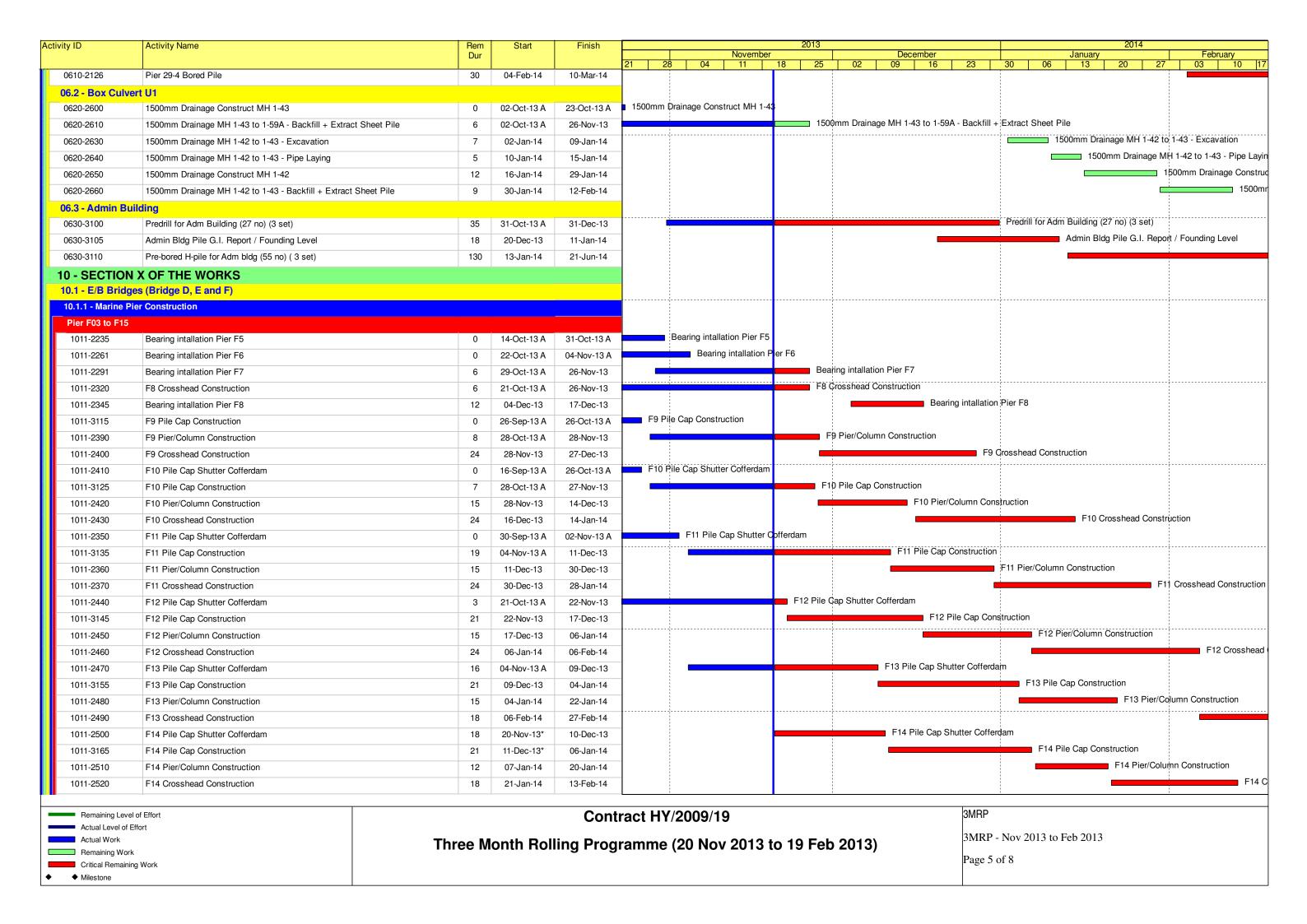
Wan Chai Development Phase II-

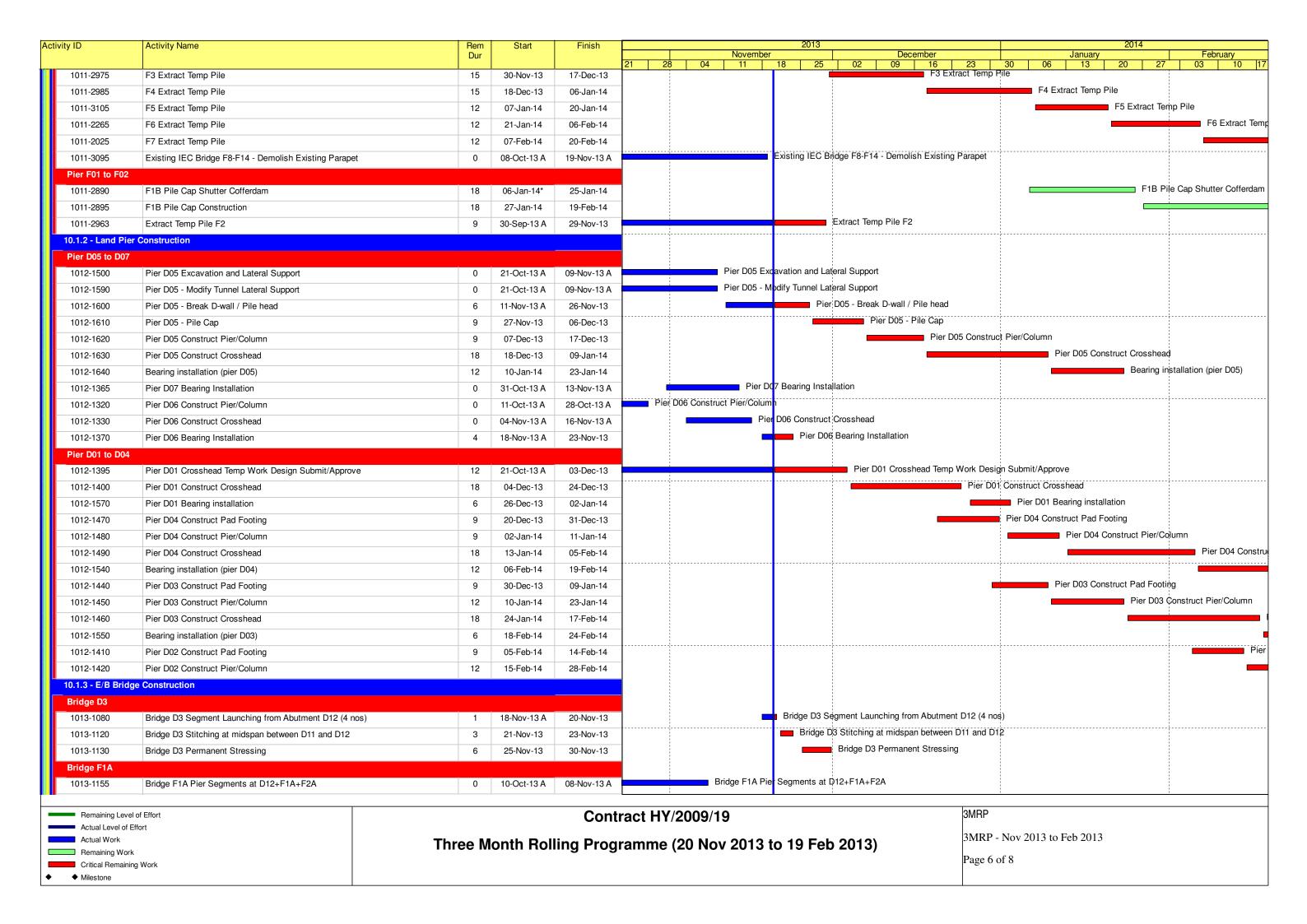

Central-Wan Chai Bypass over MTR Tuen Wan Line

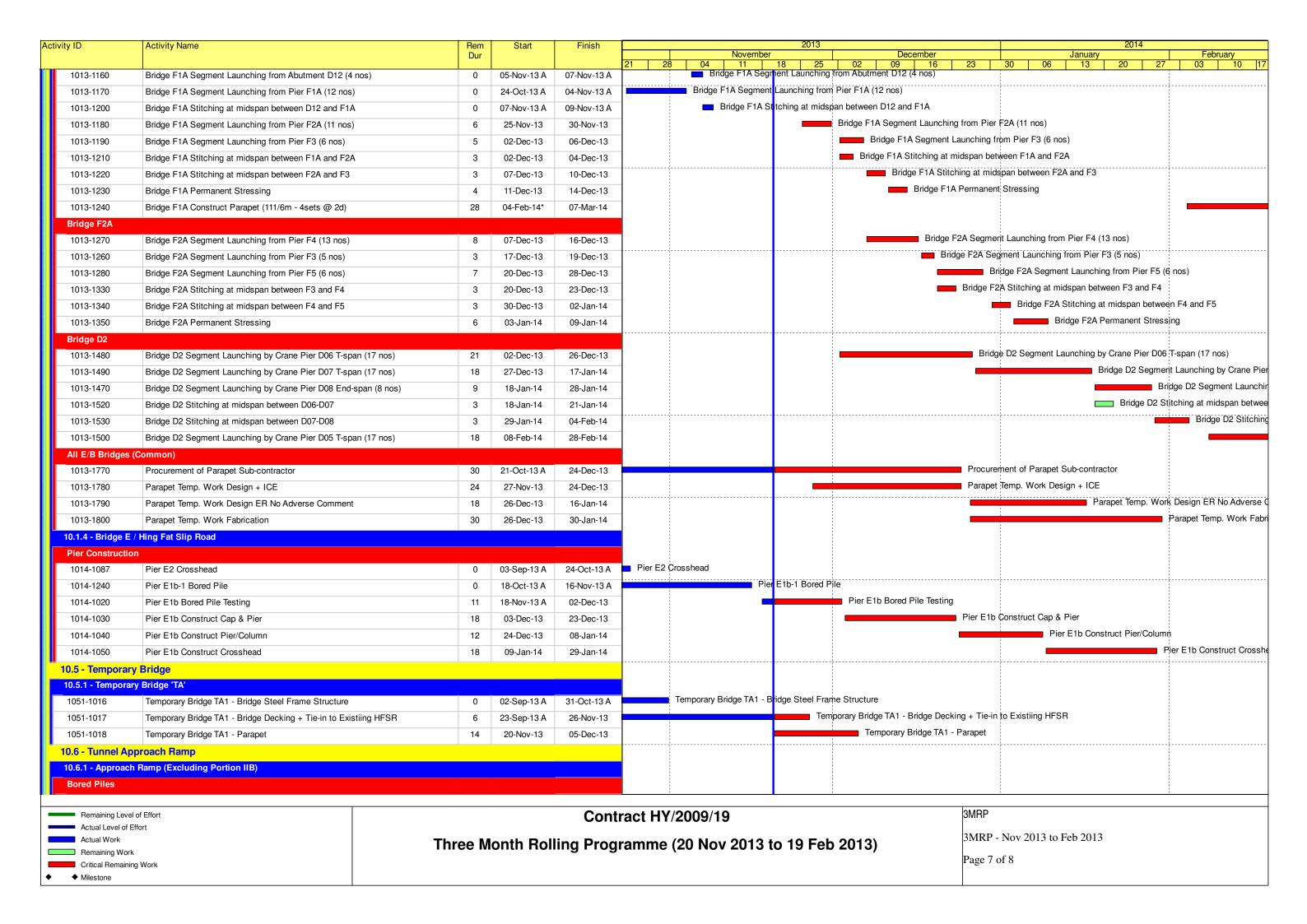

(Works Programme - Rev. L)




金門-利達聯營 ◢ Gammon – Leader Joint Venture ≰







Activity	[,] ID	D Activity Name			Finish			2013							201	4		
1		•		Start			November	r	Dece	mber				January	'		Fe	ebruary
						21 28	3 04 11	18 25	02 09	16	23	30	06	13	20	27	03	10 1
	1061-1580	Bored Pile Ramp - BN07	9	25-Oct-13 A	29-Nov-13				Bored Pile Ramp - BN	07								
Ш	1061-1661	Bored Pile Ramp - BM40	12	03-Oct-13 A	03-Dec-13				Bored Pile Ramp	- BM40								
Ш	1061-1670	Remaining Pre-drilling for Approach Ramp Bored Piles	42	19-Jul-13 A	09-Jan-14			-	·				R	Remaining I	Pre-drilling	for Appro	ach Ram	p Bored Piles
Ш	1061-1680	Bored Pile Ramp - BM42	18	04-Dec-13	24-Dec-13						Bored	l Pile Ram	np - BM42	2				
Ш	1061-1690	Bored Pile Ramp - BM39	18	26-Dec-13	16-Jan-14									B	ored Pile I	Ramp - BN	139	
	1061-1700	Bored Pile Ramp - BM43	18	17-Jan-14	10-Feb-14											1		Bored Pi
Ш	1061-1710	Bored Pile Ramp - BM40	18	11-Feb-14	03-Mar-14											-		

Remaining Level of Effort

Actual Level of Effort

Actual Work

Remaining Work

Critical Remaining Work

Milestone

Contract HY/2009/19

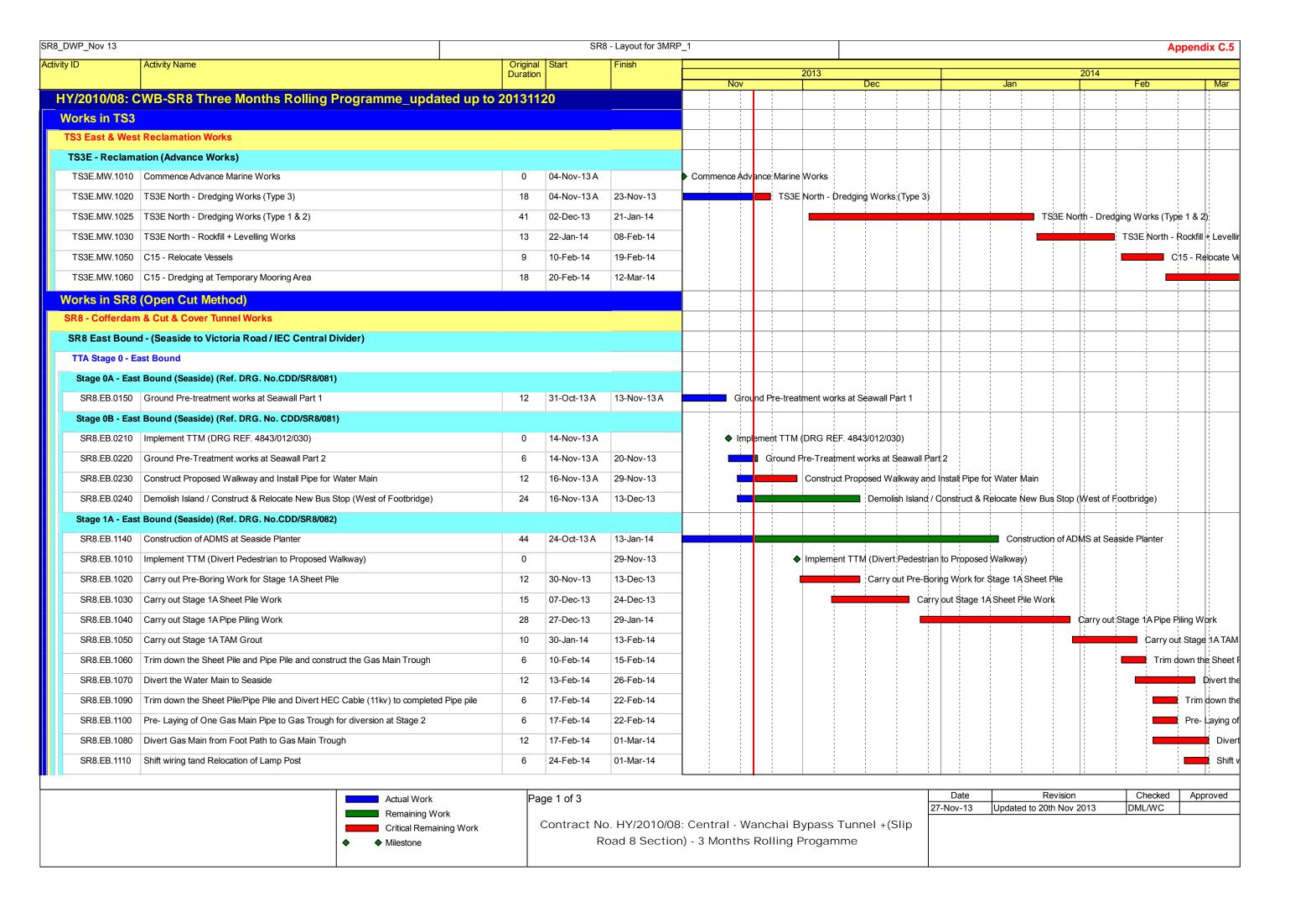
Three Month Rolling Programme (20 Nov 2013 to 19 Feb 2013)

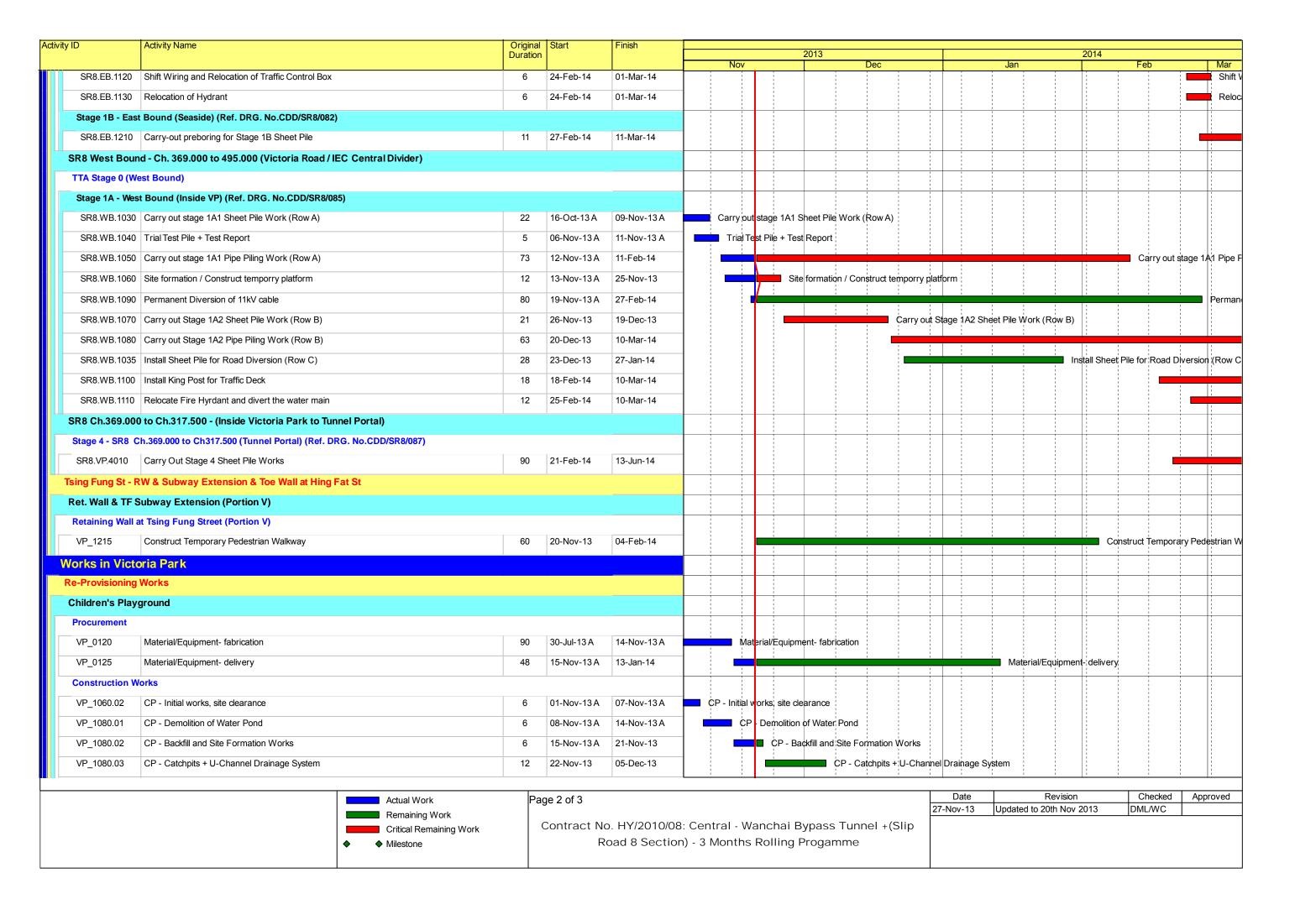
3MRP - Nov 2013 to Feb 2013

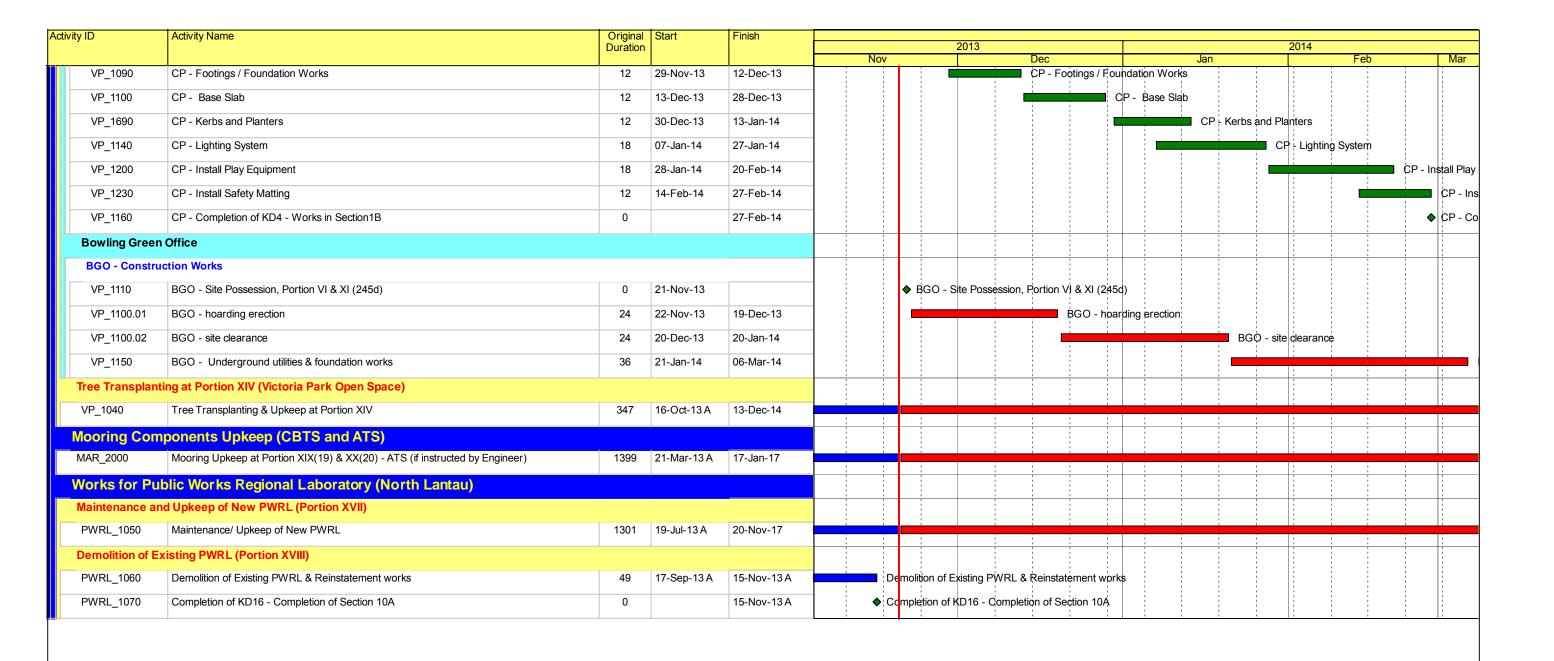
Page 8 of 8

CEDD Contract No. HK/2012/08 Wan Chai Development Phase II Central - Wan Chai Bypass at Wan Chai West

Page : 1 /


HK/2012/08 Reviewed Works Programme - (Conforming) - Rev.0/1 23 Aug 2013 Dredging and Reclamation **Marine Work Construction** Area C - Demolish Expo Drive West Bridge MAR12840 Area C - Expo Drive - saw cut and remove (Bay 3) 5 11-Aug-13 A 24-Aug-13 MAR13220 Area C - Expo Drive - saw cut and remove (Bay 4) 5 13-Aug-13 A 24-Aug-13 5 26-Aug-13 30-Aug-13 MAR13240 Area C - Expo Drive - saw cut and remove (Bay 5) MAR13260 5 31-Aug-13 Area C - Expo Drive - saw cut and remove (Bay 6) 05-Sep-13 11-Sep-13 MAR13280 Area C - Expo Drive - saw cut and remove (Bay 7) 5 06-Sep-13 MAR13440 Area C - Expo Drive - saw cut and remove (Bay 8) 5 12-Sep-13 17-Sep-13 MAR13480 Area C - Expo Drive - saw cut and remove (Bay 9) 5 18-Sep-13 24-Sep-13 MAR13500 Area C - Expo Drive - saw cut and remove (Bay 10) 5 25-Sep-13 MAR13520 Area C - Expo Drive - saw cut and remove ((Bay 11) 5 02-Oct-13 07-Oct-13 Dredging Dredging - Zone C Zone C - Dredging [R6, R7] (25m control zone / temp seawall) 3 30-Aug-13 02-Sep-13 MAR11340 4 03-Sep-13 MAR11350 Zone C - Dredging [R3-R5] (25m control zone) 06-Sep-13 MAR11360 Zone C - remove existing rock armour [S7-S8] (temp seawall) 7 07-Sep-13 14-Sep-13 MAR11380 Zone C - Final Hydrographic Survey (temp seawall) 3 16-Sep-13 18-Sep-13 MAR11410 Zone C - Dredging [S3-S6, T4-T5] 13 16-Sep-13 02-Oct-13 MAR11460 Zone C - remove exiisting rock armour [T6-T7, U6-U7] (bridge area) 7 08-Oct-13 16-Oct-13 MAR11480 Zone C - Dredging [U4-U7] (bridge area) 3 17-Oct-13 19-Oct-13 MAR11500 Zone C - Dredging [T4-T7] (bridge area) 6 21-Oct-13 26-Oct-13 MAR11580 Zone C - Final Hydrographic Sruvey (bridge area) 4 28-Oct-13 31-Oct-13 Dredging - Zone B 4 30-Aug-13 03-Sep-13 MAR10900 Zone B - dredging [Q6-Q8] (25m control zone / seawall) MAR10910 Zone B - dredging [Q2-Q5] (25m control zone) 4 04-Sep-13 07-Sep-13 MAR10920 Zone B - dredging [P6-P8] (seawall) 6 09-Sep-13 14-Sep-13 MAR12100 Zone B - dredging [P2-P5] 6 28-Oct-13 02-Nov-13 MAR12140 Zone B - Final Hydrographic Sruvey 7 04-Nov-13 11-Nov-13 Dredging - Zone A2 Zone A2 - Complete discommissioning of Submarine Sewage Outfall (conforming by 20-Aug-13 MAR10120 MAR10140 Zone A2 - Complete discommissioning of Cross Harbour Watermains (conforming by 20-Aug-13 Zone A2 - dredging [L6-L8, M6-M8] (seawall) MAR10160 11 16-Sep-13 28-Sep-13 MAR10200 Zone A2 - dredging [M1-M5] 15-Nov-13 11 04-Nov-13 MAR12440 Zone A2 - dredging [L0-L5] 21-Nov-13 5 16-Nov-13 MAR12460 Zone A2 - abandon / remove existing submarine sewage outfall [L2-L5] 52 30-Sep-13 30-Nov-13 Current Milestone 29-Aug-13 Data Date: Actual Work 3 Months Rolling Programme for Area Outside Zone CRIII 20-Aug-13 Critical Remaining Work Remaining Work Remaining Level of Effort




CEDD Contract No. HK/2012/08 Wan Chai Development Phase II Central - Wan Chai Bypass at Wan Chai West

Page : 2 / 2

Activity ID	Activity Name Orig	Dur Early Start	Early Finish		2013				2014				2015			20	16				2017		$\overline{}$	2018	
-COVICY ID	Authly Name	Early Start		D J F M	A M J Jul	A S O	N D	J F M A		S 0 N	N D J F			SON	J F M			O N D	J F M			SON	D J F M		Jul A S
MAR12480	Zone A2 - abandon / remove cross harbour watermains [M2-M8]	52 30-Sep-13	30-Nov-13																						
MAR12500	Zone A2 - Final Hydrographic Sruvey	7 22-Nov-13	29-Nov-13				0																		
Dredging - Zo	ne A1		1																						
MAR10240	Zone A1 - dredging [J4-J7, K5-K7] (seawall)	22 30-Sep-13	26-Oct-13																						
MAR12520	Zone A1 - dredging [J1-J3, K0-K4]	11 22-Nov-13	04-Dec-13																						
Dredging - Zo	ne D																								
MAR11880	Zone D - Remove existing rock armour [S8-S10]	22 28-Oct-13	21-Nov-13			t	-																		
MAR11900	Zone D - dredging [R8-R10]	5 22-Nov-13	27-Nov-13				0																		
Seawall Const	ruction						 		+																
Seawall Cons	ruction - Zone C																								
MAR11560	Zone C - temp. seawall - fill rubble mound to -4.0mPD	14 19-Sep-13	07-Oct-13			•																			
MAR11570	Zone C - temp. seawall - place temp concrete block to +4.0mPD	10 08-Oct-13	19-Oct-13			•																			
MAR11600	Zone C - C4 unit - Grade 75 rockfill along C4 unit	20 21-Oct-13	12-Nov-13				-																		
MAR11620	Zone C - WDII Box 1 temp SW - place rock mound	10 13-Nov-13	23-Nov-13				•		+										1		1111				
MAR11660	Zone C - WDII Box 1 temp SW - place concrete block	8 25-Nov-13	03-Dec-13																						
Seawall Cons	ruction - Zone B																								
MAR10980	Zone B - seawall - fill rubble mound for seawall	18 19-Sep-13	11-Oct-13			•																			
MAR10990	Zone B - seawall - install block seawall type 7	7 12-Oct-13	21-Oct-13			•																			
MAR11040	Zone B - C4 unit - Grade 75 rockfill along C4 unit	20 21-Oct-13	12-Nov-13																						
MAR11060	Zone B - WDII Box 1 temp SW - place rock mound	6 13-Nov-13	19-Nov-13				0																		
MAR11080	Zone B - WDII Box 1 temp SW - place concrete block	8 20-Nov-13	28-Nov-13				п																		
MAR11200	Zone B - seawall - install block seawall type 5	7 01-Nov-13	08-Nov-13				•																		
MAR11210	Zone B - seawall - install caisson seawall no. 2N	3 29-Oct-13	31-Oct-13			Ū																			
Seawall Cons	ruction - Zone A2						:		+										1						
MAR10720	Zone A2 - seawall - fill rubble mound for seawall	22 12-Oct-13	07-Nov-13																						
MAR10740	Zone A2 - seawall - install Caisson Seawall no. 2L	4 01-Nov-13	05-Nov-13				0																		
Seawall Cons	ruction - Zone A1																								
MAR10290	Zone A1 - seawall - fill rubble mound for seawall	18 05-Nov-13	25-Nov-13				_																		
Filling	'					1			+				1		1				1-1-1-						
Filling - Zone																									
MAR11700	Zone C - public fill [T4-T7, U4-U7] - (bridge area)	28 01-Nov-13	03-Dec-13																						
Works for Se	ction Completion																								
Construction																									
Box Culvert La	, L1 & FRP-L Construction					1									1-1-1-1										
Sec VI A - Box	Culvert La bay 1-3 and Roadwork																								
CUL10140	Sec VI A - Area 1 - relocation of kiosks	10 28-Aug-13	07-Sep-13			•																			
CUL10160	Sec VI A - Area 1 - Culvert L bay 1-3 - road offset and TTA	30 06-Sep-13	12-Oct-13			-																			
CUL10440	Sec VI A - Area 1 - Culvert L bay 1-3 - Sheet pile installation	20 15-Oct-13	06-Nov-13			=																			
CUL10480	Sec VI A - Area 1 - Culvert L bay 1-3 - excavation and ELS installation	36 07-Nov-13	18-Dec-13						+				+	+-+-	1-1-1-1				1		+				
				; ; ;	1 1 1 1	1: : :	: :	1 1 1	1 1 1 1	: : :	1 1 1	1 1 1	1 1 1	1 1 1	1 : : :	- ; ; ;	: : :	1 1 1	1 1	1 1 1	1 1 1	1 1 1		1 1 1	1 1 1 1

Actual Work
Remaining Work
Critical Remaining Work

Milestone

Page 3 of 3

Contract No. HY/2010/08: Central - Wanchai Bypass Tunnel +(Slip Road 8 Section) - 3 Months Rolling Progamme

Date	Revision	Checked	Approved
27-Nov-13	Updated to 20th Nov 2013	DML/WC	